AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.000 1.000 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.719
Model: OLS Adj. R-squared: 0.675
Method: Least Squares F-statistic: 16.22
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.80e-05
Time: 04:44:24 Log-Likelihood: -98.501
No. Observations: 23 AIC: 205.0
Df Residuals: 19 BIC: 209.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 137.0596 45.052 3.042 0.007 42.764 231.355
C(dose)[T.1] -66.1324 55.583 -1.190 0.249 -182.468 50.204
expression -21.5429 11.625 -1.853 0.079 -45.874 2.788
expression:C(dose)[T.1] 29.7466 13.661 2.177 0.042 1.154 58.340
Omnibus: 0.545 Durbin-Watson: 2.264
Prob(Omnibus): 0.762 Jarque-Bera (JB): 0.599
Skew: 0.042 Prob(JB): 0.741
Kurtosis: 2.214 Cond. No. 88.5

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.49
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.83e-05
Time: 04:44:24 Log-Likelihood: -101.06
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2234 26.295 2.062 0.052 -0.627 109.074
C(dose)[T.1] 53.3395 9.685 5.507 0.000 33.137 73.542
expression -0.0039 6.653 -0.001 1.000 -13.882 13.874
Omnibus: 0.321 Durbin-Watson: 1.888
Prob(Omnibus): 0.852 Jarque-Bera (JB): 0.485
Skew: 0.059 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 27.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:44:24 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.117
Model: OLS Adj. R-squared: 0.075
Method: Least Squares F-statistic: 2.778
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.110
Time: 04:44:24 Log-Likelihood: -111.68
No. Observations: 23 AIC: 227.4
Df Residuals: 21 BIC: 229.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 15.3460 39.214 0.391 0.699 -66.204 96.896
expression 15.5437 9.326 1.667 0.110 -3.851 34.939
Omnibus: 0.076 Durbin-Watson: 2.542
Prob(Omnibus): 0.963 Jarque-Bera (JB): 0.263
Skew: 0.101 Prob(JB): 0.877
Kurtosis: 2.517 Cond. No. 25.6

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.021 0.332 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.582
Model: OLS Adj. R-squared: 0.468
Method: Least Squares F-statistic: 5.103
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0187
Time: 04:44:24 Log-Likelihood: -68.760
No. Observations: 15 AIC: 145.5
Df Residuals: 11 BIC: 148.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 203.7261 74.391 2.739 0.019 39.994 367.459
C(dose)[T.1] -106.3952 102.247 -1.041 0.320 -331.438 118.648
expression -37.9436 20.504 -1.851 0.091 -83.072 7.185
expression:C(dose)[T.1] 43.3077 28.166 1.538 0.152 -18.686 105.301
Omnibus: 4.326 Durbin-Watson: 1.214
Prob(Omnibus): 0.115 Jarque-Bera (JB): 2.051
Skew: -0.860 Prob(JB): 0.359
Kurtosis: 3.570 Cond. No. 75.2

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.492
Model: OLS Adj. R-squared: 0.407
Method: Least Squares F-statistic: 5.811
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0172
Time: 04:44:24 Log-Likelihood: -70.220
No. Observations: 15 AIC: 146.4
Df Residuals: 12 BIC: 148.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 121.2877 54.421 2.229 0.046 2.715 239.860
C(dose)[T.1] 49.2679 15.110 3.261 0.007 16.346 82.189
expression -14.9937 14.835 -1.011 0.332 -47.317 17.330
Omnibus: 2.548 Durbin-Watson: 1.053
Prob(Omnibus): 0.280 Jarque-Bera (JB): 1.549
Skew: -0.782 Prob(JB): 0.461
Kurtosis: 2.817 Cond. No. 28.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:44:24 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.042
Model: OLS Adj. R-squared: -0.032
Method: Least Squares F-statistic: 0.5692
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.464
Time: 04:44:24 Log-Likelihood: -74.979
No. Observations: 15 AIC: 154.0
Df Residuals: 13 BIC: 155.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 146.7504 71.062 2.065 0.059 -6.769 300.270
expression -14.7674 19.574 -0.754 0.464 -57.055 27.520
Omnibus: 3.314 Durbin-Watson: 1.821
Prob(Omnibus): 0.191 Jarque-Bera (JB): 1.437
Skew: 0.378 Prob(JB): 0.488
Kurtosis: 1.686 Cond. No. 27.9