AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.242 0.628 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.657
Model: OLS Adj. R-squared: 0.603
Method: Least Squares F-statistic: 12.15
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000114
Time: 04:42:52 Log-Likelihood: -100.79
No. Observations: 23 AIC: 209.6
Df Residuals: 19 BIC: 214.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 48.5809 157.348 0.309 0.761 -280.752 377.914
C(dose)[T.1] 156.5527 213.469 0.733 0.472 -290.244 603.349
expression 0.7790 21.764 0.036 0.972 -44.774 46.332
expression:C(dose)[T.1] -13.8891 29.129 -0.477 0.639 -74.857 47.079
Omnibus: 0.117 Durbin-Watson: 1.844
Prob(Omnibus): 0.943 Jarque-Bera (JB): 0.325
Skew: 0.097 Prob(JB): 0.850
Kurtosis: 2.451 Cond. No. 478.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.619
Method: Least Squares F-statistic: 18.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.51e-05
Time: 04:42:52 Log-Likelihood: -100.92
No. Observations: 23 AIC: 207.8
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 104.5932 102.640 1.019 0.320 -109.509 318.696
C(dose)[T.1] 54.8687 9.257 5.927 0.000 35.559 74.178
expression -6.9745 14.183 -0.492 0.628 -36.560 22.611
Omnibus: 0.326 Durbin-Watson: 1.854
Prob(Omnibus): 0.849 Jarque-Bera (JB): 0.490
Skew: 0.090 Prob(JB): 0.783
Kurtosis: 2.308 Cond. No. 177.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:42:52 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.044
Model: OLS Adj. R-squared: -0.001
Method: Least Squares F-statistic: 0.9697
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.336
Time: 04:42:52 Log-Likelihood: -112.59
No. Observations: 23 AIC: 229.2
Df Residuals: 21 BIC: 231.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -76.4758 158.770 -0.482 0.635 -406.656 253.704
expression 21.3112 21.641 0.985 0.336 -23.694 66.317
Omnibus: 1.774 Durbin-Watson: 2.433
Prob(Omnibus): 0.412 Jarque-Bera (JB): 1.291
Skew: 0.356 Prob(JB): 0.525
Kurtosis: 2.084 Cond. No. 168.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.108 0.749 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.514
Model: OLS Adj. R-squared: 0.382
Method: Least Squares F-statistic: 3.885
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0407
Time: 04:42:52 Log-Likelihood: -69.882
No. Observations: 15 AIC: 147.8
Df Residuals: 11 BIC: 150.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 231.8111 166.536 1.392 0.191 -134.733 598.355
C(dose)[T.1] -263.6374 266.708 -0.988 0.344 -850.657 323.383
expression -22.3232 22.564 -0.989 0.344 -71.986 27.340
expression:C(dose)[T.1] 42.6689 36.362 1.173 0.265 -37.364 122.702
Omnibus: 2.588 Durbin-Watson: 1.177
Prob(Omnibus): 0.274 Jarque-Bera (JB): 1.470
Skew: -0.766 Prob(JB): 0.480
Kurtosis: 2.916 Cond. No. 327.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.454
Model: OLS Adj. R-squared: 0.363
Method: Least Squares F-statistic: 4.982
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0266
Time: 04:42:52 Log-Likelihood: -70.766
No. Observations: 15 AIC: 147.5
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 110.8259 132.820 0.834 0.420 -178.565 400.217
C(dose)[T.1] 48.7997 15.716 3.105 0.009 14.557 83.042
expression -5.8934 17.970 -0.328 0.749 -45.047 33.260
Omnibus: 2.725 Durbin-Watson: 0.827
Prob(Omnibus): 0.256 Jarque-Bera (JB): 1.879
Skew: -0.845 Prob(JB): 0.391
Kurtosis: 2.617 Cond. No. 127.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:42:52 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.015
Model: OLS Adj. R-squared: -0.061
Method: Least Squares F-statistic: 0.1942
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.667
Time: 04:42:52 Log-Likelihood: -75.189
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 168.3207 169.697 0.992 0.339 -198.287 534.929
expression -10.1877 23.117 -0.441 0.667 -60.129 39.753
Omnibus: 1.200 Durbin-Watson: 1.634
Prob(Omnibus): 0.549 Jarque-Bera (JB): 0.802
Skew: 0.169 Prob(JB): 0.670
Kurtosis: 1.919 Cond. No. 126.