AIM Score vs. Gene Expression 
		Full X range:
		
		 
			
		
		Auto X range:
		
		 
		
		
		
		Group Comparisons: Boxplots
		
		 
		
		
		 CP73 
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic |   p-value  |   df difference  |  
		 |  0.242  |   0.628  |   1.0  |  
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.657 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.603 | 
  | Method: |              Least Squares |     F-statistic:        |     12.15 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  0.000114 | 
  | Time: |                  05:16:57 |        Log-Likelihood:     |   -100.79 | 
  | No. Observations: |           23 |         AIC:                |     209.6 | 
  | Df Residuals: |               19 |         BIC:                |     214.1 | 
  | Df Model: |                    3 |                             |        |    
              |                 coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |                   48.5809 |    157.348 |      0.309 |   0.761 |   -280.752   377.914 | 
  | C(dose)[T.1] |               156.5527 |    213.469 |      0.733 |   0.472 |   -290.244   603.349 | 
  | expression |                   0.7790 |     21.764 |      0.036 |   0.972 |    -44.774    46.332 | 
  | expression:C(dose)[T.1] |    -13.8891 |     29.129 |     -0.477 |   0.639 |    -74.857    47.079 | 
  | Omnibus: |         0.117 |    Durbin-Watson:      |     1.844 | 
  | Prob(Omnibus): |   0.943 |    Jarque-Bera (JB):   |     0.325 | 
  | Skew: |            0.097 |    Prob(JB):           |     0.850 | 
  | Kurtosis: |        2.451 |    Cond. No.           |      478. | 
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.653 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.619 | 
  | Method: |              Least Squares |     F-statistic:        |     18.84 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  2.51e-05 | 
  | Time: |                  05:16:57 |        Log-Likelihood:     |   -100.92 | 
  | No. Observations: |           23 |         AIC:                |     207.8 | 
  | Df Residuals: |               20 |         BIC:                |     211.3 | 
  | Df Model: |                    2 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |       104.5932 |    102.640 |      1.019 |   0.320 |   -109.509   318.696 | 
  | C(dose)[T.1] |     54.8687 |      9.257 |      5.927 |   0.000 |     35.559    74.178 | 
  | expression |       -6.9745 |     14.183 |     -0.492 |   0.628 |    -36.560    22.611 | 
  | Omnibus: |         0.326 |    Durbin-Watson:      |     1.854 | 
  | Prob(Omnibus): |   0.849 |    Jarque-Bera (JB):   |     0.490 | 
  | Skew: |            0.090 |    Prob(JB):           |     0.783 | 
  | Kurtosis: |        2.308 |    Cond. No.           |      177. | 
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.649 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.632 | 
  | Method: |              Least Squares |     F-statistic:        |     38.84 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  3.51e-06 | 
  | Time: |                  05:16:57 |        Log-Likelihood:     |   -101.06 | 
  | No. Observations: |           23 |         AIC:                |     206.1 | 
  | Df Residuals: |               21 |         BIC:                |     208.4 | 
  | Df Model: |                    1 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        54.2083 |      5.919 |      9.159 |   0.000 |     41.900    66.517 | 
  | C(dose)[T.1] |     53.3371 |      8.558 |      6.232 |   0.000 |     35.539    71.135 | 
  | Omnibus: |         0.322 |    Durbin-Watson:      |     1.888 | 
  | Prob(Omnibus): |   0.851 |    Jarque-Bera (JB):   |     0.485 | 
  | Skew: |            0.060 |    Prob(JB):           |     0.785 | 
  | Kurtosis: |        2.299 |    Cond. No.           |      2.57 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.044 | 
  | Model: |                    OLS |          Adj. R-squared:     |    -0.001 | 
  | Method: |              Least Squares |     F-statistic:        |    0.9697 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |    0.336 |  
  | Time: |                  05:16:57 |        Log-Likelihood:     |   -112.59 | 
  | No. Observations: |           23 |         AIC:                |     229.2 | 
  | Df Residuals: |               21 |         BIC:                |     231.4 | 
  | Df Model: |                    1 |                             |        |    
        |          coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |     -76.4758 |    158.770 |     -0.482 |   0.635 |   -406.656   253.704 | 
  | expression |     21.3112 |     21.641 |      0.985 |   0.336 |    -23.694    66.317 | 
  | Omnibus: |         1.774 |    Durbin-Watson:      |     2.433 | 
  | Prob(Omnibus): |   0.412 |    Jarque-Bera (JB):   |     1.291 | 
  | Skew: |            0.356 |    Prob(JB):           |     0.525 | 
  | Kurtosis: |        2.084 |    Cond. No.           |      168. | 
			 
		
			
		
		 
	
		
		 CP101 
		
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic |   p-value  |   df difference  |  
		 |  0.108  |   0.749  |   1.0  |  
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.514 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.382 | 
  | Method: |              Least Squares |     F-statistic:        |     3.885 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.0407 |  
  | Time: |                  05:16:57 |        Log-Likelihood:     |   -69.882 | 
  | No. Observations: |           15 |         AIC:                |     147.8 | 
  | Df Residuals: |               11 |         BIC:                |     150.6 | 
  | Df Model: |                    3 |                             |        |    
              |                 coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |                  231.8111 |    166.536 |      1.392 |   0.191 |   -134.733   598.355 | 
  | C(dose)[T.1] |              -263.6374 |    266.708 |     -0.988 |   0.344 |   -850.657   323.383 | 
  | expression |                 -22.3232 |     22.564 |     -0.989 |   0.344 |    -71.986    27.340 | 
  | expression:C(dose)[T.1] |     42.6689 |     36.362 |      1.173 |   0.265 |    -37.364   122.702 | 
  | Omnibus: |         2.588 |    Durbin-Watson:      |     1.177 | 
  | Prob(Omnibus): |   0.274 |    Jarque-Bera (JB):   |     1.470 | 
  | Skew: |           -0.766 |    Prob(JB):           |     0.480 | 
  | Kurtosis: |        2.916 |    Cond. No.           |      327. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.454 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.363 | 
  | Method: |              Least Squares |     F-statistic:        |     4.982 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.0266 |  
  | Time: |                  05:16:57 |        Log-Likelihood:     |   -70.766 | 
  | No. Observations: |           15 |         AIC:                |     147.5 | 
  | Df Residuals: |               12 |         BIC:                |     149.7 | 
  | Df Model: |                    2 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |       110.8259 |    132.820 |      0.834 |   0.420 |   -178.565   400.217 | 
  | C(dose)[T.1] |     48.7997 |     15.716 |      3.105 |   0.009 |     14.557    83.042 | 
  | expression |       -5.8934 |     17.970 |     -0.328 |   0.749 |    -45.047    33.260 | 
  | Omnibus: |         2.725 |    Durbin-Watson:      |     0.827 | 
  | Prob(Omnibus): |   0.256 |    Jarque-Bera (JB):   |     1.879 | 
  | Skew: |           -0.845 |    Prob(JB):           |     0.391 | 
  | Kurtosis: |        2.617 |    Cond. No.           |      127. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.449 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.406 | 
  | Method: |              Least Squares |     F-statistic:        |     10.58 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.00629 | 
  | Time: |                  05:16:57 |        Log-Likelihood:     |   -70.833 | 
  | No. Observations: |           15 |         AIC:                |     145.7 | 
  | Df Residuals: |               13 |         BIC:                |     147.1 | 
  | Df Model: |                    1 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        67.4286 |     11.044 |      6.106 |   0.000 |     43.570    91.287 | 
  | C(dose)[T.1] |     49.1964 |     15.122 |      3.253 |   0.006 |     16.527    81.866 | 
  | Omnibus: |         2.713 |    Durbin-Watson:      |     0.810 | 
  | Prob(Omnibus): |   0.258 |    Jarque-Bera (JB):   |     1.868 | 
  | Skew: |           -0.843 |    Prob(JB):           |     0.393 | 
  | Kurtosis: |        2.619 |    Cond. No.           |      2.70 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.015 | 
  | Model: |                    OLS |          Adj. R-squared:     |    -0.061 | 
  | Method: |              Least Squares |     F-statistic:        |    0.1942 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |    0.667 |  
  | Time: |                  05:16:57 |        Log-Likelihood:     |   -75.189 | 
  | No. Observations: |           15 |         AIC:                |     154.4 | 
  | Df Residuals: |               13 |         BIC:                |     155.8 | 
  | Df Model: |                    1 |                             |        |    
        |          coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |     168.3207 |    169.697 |      0.992 |   0.339 |   -198.287   534.929 | 
  | expression |    -10.1877 |     23.117 |     -0.441 |   0.667 |    -60.129    39.753 | 
  | Omnibus: |         1.200 |    Durbin-Watson:      |     1.634 | 
  | Prob(Omnibus): |   0.549 |    Jarque-Bera (JB):   |     0.802 | 
  | Skew: |            0.169 |    Prob(JB):           |     0.670 | 
  | Kurtosis: |        1.919 |    Cond. No.           |      126. |