AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.303 0.588 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.661
Model: OLS Adj. R-squared: 0.607
Method: Least Squares F-statistic: 12.34
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000104
Time: 04:38:13 Log-Likelihood: -100.67
No. Observations: 23 AIC: 209.3
Df Residuals: 19 BIC: 213.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 48.5022 67.299 0.721 0.480 -92.356 189.360
C(dose)[T.1] 103.4933 87.290 1.186 0.250 -79.206 286.192
expression 1.0291 12.087 0.085 0.933 -24.270 26.328
expression:C(dose)[T.1] -9.7772 16.255 -0.601 0.555 -43.799 24.245
Omnibus: 1.239 Durbin-Watson: 1.889
Prob(Omnibus): 0.538 Jarque-Bera (JB): 1.007
Skew: 0.280 Prob(JB): 0.604
Kurtosis: 2.142 Cond. No. 145.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.654
Model: OLS Adj. R-squared: 0.620
Method: Least Squares F-statistic: 18.93
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.44e-05
Time: 04:38:13 Log-Likelihood: -100.89
No. Observations: 23 AIC: 207.8
Df Residuals: 20 BIC: 211.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 78.4789 44.499 1.764 0.093 -14.343 171.301
C(dose)[T.1] 51.3081 9.452 5.428 0.000 31.591 71.025
expression -4.3773 7.952 -0.550 0.588 -20.964 12.210
Omnibus: 0.962 Durbin-Watson: 1.767
Prob(Omnibus): 0.618 Jarque-Bera (JB): 0.797
Skew: 0.138 Prob(JB): 0.671
Kurtosis: 2.131 Cond. No. 57.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:38:13 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.145
Model: OLS Adj. R-squared: 0.104
Method: Least Squares F-statistic: 3.561
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0730
Time: 04:38:13 Log-Likelihood: -111.30
No. Observations: 23 AIC: 226.6
Df Residuals: 21 BIC: 228.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 192.6060 60.189 3.200 0.004 67.435 317.777
expression -21.2078 11.238 -1.887 0.073 -44.578 2.162
Omnibus: 0.519 Durbin-Watson: 2.453
Prob(Omnibus): 0.772 Jarque-Bera (JB): 0.613
Skew: 0.281 Prob(JB): 0.736
Kurtosis: 2.431 Cond. No. 50.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.662 0.222 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.592
Model: OLS Adj. R-squared: 0.481
Method: Least Squares F-statistic: 5.322
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0165
Time: 04:38:13 Log-Likelihood: -68.575
No. Observations: 15 AIC: 145.2
Df Residuals: 11 BIC: 148.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -234.4637 155.512 -1.508 0.160 -576.743 107.816
C(dose)[T.1] 323.6711 183.904 1.760 0.106 -81.099 728.442
expression 46.0427 23.665 1.946 0.078 -6.044 98.130
expression:C(dose)[T.1] -41.4006 28.872 -1.434 0.179 -104.949 22.147
Omnibus: 4.261 Durbin-Watson: 1.536
Prob(Omnibus): 0.119 Jarque-Bera (JB): 2.041
Skew: -0.864 Prob(JB): 0.360
Kurtosis: 3.528 Cond. No. 238.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.516
Model: OLS Adj. R-squared: 0.435
Method: Least Squares F-statistic: 6.392
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0129
Time: 04:38:13 Log-Likelihood: -69.860
No. Observations: 15 AIC: 145.7
Df Residuals: 12 BIC: 147.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -52.0931 93.343 -0.558 0.587 -255.471 151.285
C(dose)[T.1] 61.0539 17.384 3.512 0.004 23.177 98.931
expression 18.2287 14.141 1.289 0.222 -12.582 49.039
Omnibus: 0.693 Durbin-Watson: 1.010
Prob(Omnibus): 0.707 Jarque-Bera (JB): 0.269
Skew: -0.320 Prob(JB): 0.874
Kurtosis: 2.857 Cond. No. 81.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:38:13 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.018
Model: OLS Adj. R-squared: -0.057
Method: Least Squares F-statistic: 0.2404
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.632
Time: 04:38:13 Log-Likelihood: -75.163
No. Observations: 15 AIC: 154.3
Df Residuals: 13 BIC: 155.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 143.6523 102.443 1.402 0.184 -77.662 364.967
expression -8.0494 16.417 -0.490 0.632 -43.516 27.417
Omnibus: 0.137 Durbin-Watson: 1.470
Prob(Omnibus): 0.934 Jarque-Bera (JB): 0.336
Skew: -0.140 Prob(JB): 0.845
Kurtosis: 2.322 Cond. No. 65.1