AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.918 0.350 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.692
Model: OLS Adj. R-squared: 0.644
Method: Least Squares F-statistic: 14.24
Date: Thu, 21 Nov 2024 Prob (F-statistic): 4.23e-05
Time: 04:54:29 Log-Likelihood: -99.555
No. Observations: 23 AIC: 207.1
Df Residuals: 19 BIC: 211.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 63.1181 56.678 1.114 0.279 -55.510 181.746
C(dose)[T.1] 213.0062 118.450 1.798 0.088 -34.912 460.925
expression -1.3603 8.607 -0.158 0.876 -19.375 16.655
expression:C(dose)[T.1] -21.7712 16.645 -1.308 0.206 -56.610 13.068
Omnibus: 0.158 Durbin-Watson: 1.720
Prob(Omnibus): 0.924 Jarque-Bera (JB): 0.374
Skew: 0.040 Prob(JB): 0.829
Kurtosis: 2.380 Cond. No. 238.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.664
Model: OLS Adj. R-squared: 0.631
Method: Least Squares F-statistic: 19.80
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.81e-05
Time: 04:54:29 Log-Likelihood: -100.55
No. Observations: 23 AIC: 207.1
Df Residuals: 20 BIC: 210.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 101.2482 49.462 2.047 0.054 -1.927 204.423
C(dose)[T.1] 58.6363 10.205 5.746 0.000 37.350 79.923
expression -7.1817 7.497 -0.958 0.350 -22.820 8.457
Omnibus: 0.351 Durbin-Watson: 1.905
Prob(Omnibus): 0.839 Jarque-Bera (JB): 0.505
Skew: 0.198 Prob(JB): 0.777
Kurtosis: 2.391 Cond. No. 82.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:54:29 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.111
Model: OLS Adj. R-squared: 0.068
Method: Least Squares F-statistic: 2.609
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.121
Time: 04:54:29 Log-Likelihood: -111.76
No. Observations: 23 AIC: 227.5
Df Residuals: 21 BIC: 229.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -31.9000 69.431 -0.459 0.651 -176.290 112.490
expression 16.1697 10.010 1.615 0.121 -4.647 36.986
Omnibus: 0.587 Durbin-Watson: 2.231
Prob(Omnibus): 0.746 Jarque-Bera (JB): 0.661
Skew: 0.202 Prob(JB): 0.718
Kurtosis: 2.275 Cond. No. 72.2

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.020 0.890 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.535
Model: OLS Adj. R-squared: 0.409
Method: Least Squares F-statistic: 4.224
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0324
Time: 04:54:29 Log-Likelihood: -69.552
No. Observations: 15 AIC: 147.1
Df Residuals: 11 BIC: 149.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 123.3297 92.280 1.336 0.208 -79.777 326.436
C(dose)[T.1] -207.9663 181.037 -1.149 0.275 -606.426 190.493
expression -9.4330 15.460 -0.610 0.554 -43.461 24.595
expression:C(dose)[T.1] 42.5979 29.914 1.424 0.182 -23.243 108.439
Omnibus: 1.977 Durbin-Watson: 0.899
Prob(Omnibus): 0.372 Jarque-Bera (JB): 1.525
Skew: -0.710 Prob(JB): 0.467
Kurtosis: 2.349 Cond. No. 181.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.450
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 4.903
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0278
Time: 04:54:29 Log-Likelihood: -70.821
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 55.9023 82.528 0.677 0.511 -123.910 235.714
C(dose)[T.1] 48.9194 15.849 3.087 0.009 14.388 83.451
expression 1.9450 13.791 0.141 0.890 -28.102 31.992
Omnibus: 2.677 Durbin-Watson: 0.800
Prob(Omnibus): 0.262 Jarque-Bera (JB): 1.873
Skew: -0.840 Prob(JB): 0.392
Kurtosis: 2.584 Cond. No. 65.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:54:29 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.013
Model: OLS Adj. R-squared: -0.063
Method: Least Squares F-statistic: 0.1681
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.688
Time: 04:54:29 Log-Likelihood: -75.204
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 50.3336 106.174 0.474 0.643 -179.042 279.709
expression 7.2197 17.609 0.410 0.688 -30.823 45.263
Omnibus: 0.316 Durbin-Watson: 1.520
Prob(Omnibus): 0.854 Jarque-Bera (JB): 0.461
Skew: -0.075 Prob(JB): 0.794
Kurtosis: 2.154 Cond. No. 65.1