AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.356 0.558 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.669
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 12.77
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.40e-05
Time: 05:05:44 Log-Likelihood: -100.41
No. Observations: 23 AIC: 208.8
Df Residuals: 19 BIC: 213.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 91.6170 84.879 1.079 0.294 -86.036 269.270
C(dose)[T.1] -33.2285 99.318 -0.335 0.742 -241.102 174.646
expression -6.7227 15.215 -0.442 0.664 -38.568 25.122
expression:C(dose)[T.1] 15.5630 17.782 0.875 0.392 -21.656 52.782
Omnibus: 0.451 Durbin-Watson: 1.860
Prob(Omnibus): 0.798 Jarque-Bera (JB): 0.269
Skew: 0.249 Prob(JB): 0.874
Kurtosis: 2.817 Cond. No. 189.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.655
Model: OLS Adj. R-squared: 0.621
Method: Least Squares F-statistic: 19.00
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.38e-05
Time: 05:05:44 Log-Likelihood: -100.86
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 28.2200 43.979 0.642 0.528 -63.520 119.960
C(dose)[T.1] 53.3556 8.693 6.138 0.000 35.223 71.489
expression 4.6704 7.829 0.597 0.558 -11.661 21.002
Omnibus: 0.160 Durbin-Watson: 1.920
Prob(Omnibus): 0.923 Jarque-Bera (JB): 0.349
Skew: 0.139 Prob(JB): 0.840
Kurtosis: 2.464 Cond. No. 58.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:05:44 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.006
Model: OLS Adj. R-squared: -0.042
Method: Least Squares F-statistic: 0.1202
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.732
Time: 05:05:44 Log-Likelihood: -113.04
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.6928 72.532 0.754 0.459 -96.145 205.531
expression 4.4987 12.975 0.347 0.732 -22.484 31.481
Omnibus: 2.703 Durbin-Watson: 2.552
Prob(Omnibus): 0.259 Jarque-Bera (JB): 1.402
Skew: 0.262 Prob(JB): 0.496
Kurtosis: 1.910 Cond. No. 58.1

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.418 0.089 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.573
Model: OLS Adj. R-squared: 0.457
Method: Least Squares F-statistic: 4.920
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0209
Time: 05:05:44 Log-Likelihood: -68.918
No. Observations: 15 AIC: 145.8
Df Residuals: 11 BIC: 148.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 204.0302 79.041 2.581 0.026 30.062 377.999
C(dose)[T.1] -6.8011 217.138 -0.031 0.976 -484.719 471.116
expression -18.6289 10.682 -1.744 0.109 -42.141 4.883
expression:C(dose)[T.1] 7.0666 30.882 0.229 0.823 -60.905 75.038
Omnibus: 3.373 Durbin-Watson: 1.280
Prob(Omnibus): 0.185 Jarque-Bera (JB): 1.843
Skew: -0.857 Prob(JB): 0.398
Kurtosis: 3.089 Cond. No. 255.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.571
Model: OLS Adj. R-squared: 0.499
Method: Least Squares F-statistic: 7.985
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00624
Time: 05:05:44 Log-Likelihood: -68.953
No. Observations: 15 AIC: 143.9
Df Residuals: 12 BIC: 146.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 197.8301 71.260 2.776 0.017 42.569 353.092
C(dose)[T.1] 42.7678 14.315 2.988 0.011 11.579 73.957
expression -17.7834 9.619 -1.849 0.089 -38.742 3.175
Omnibus: 3.044 Durbin-Watson: 1.221
Prob(Omnibus): 0.218 Jarque-Bera (JB): 1.737
Skew: -0.833 Prob(JB): 0.420
Kurtosis: 2.970 Cond. No. 75.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:05:44 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.252
Model: OLS Adj. R-squared: 0.194
Method: Least Squares F-statistic: 4.376
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0566
Time: 05:05:44 Log-Likelihood: -73.124
No. Observations: 15 AIC: 150.2
Df Residuals: 13 BIC: 151.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 270.4850 84.983 3.183 0.007 86.890 454.080
expression -24.7646 11.839 -2.092 0.057 -50.340 0.811
Omnibus: 4.544 Durbin-Watson: 2.114
Prob(Omnibus): 0.103 Jarque-Bera (JB): 1.759
Skew: 0.462 Prob(JB): 0.415
Kurtosis: 1.601 Cond. No. 70.7