AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.786 | 0.386 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.713 |
Model: | OLS | Adj. R-squared: | 0.668 |
Method: | Least Squares | F-statistic: | 15.75 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.18e-05 |
Time: | 04:02:56 | Log-Likelihood: | -98.740 |
No. Observations: | 23 | AIC: | 205.5 |
Df Residuals: | 19 | BIC: | 210.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 13.2245 | 66.235 | 0.200 | 0.844 | -125.407 151.856 |
C(dose)[T.1] | 223.4996 | 93.470 | 2.391 | 0.027 | 27.864 419.136 |
expression | 6.1448 | 9.895 | 0.621 | 0.542 | -14.565 26.855 |
expression:C(dose)[T.1] | -25.8998 | 14.101 | -1.837 | 0.082 | -55.413 3.613 |
Omnibus: | 1.692 | Durbin-Watson: | 1.769 |
Prob(Omnibus): | 0.429 | Jarque-Bera (JB): | 0.605 |
Skew: | -0.341 | Prob(JB): | 0.739 |
Kurtosis: | 3.409 | Cond. No. | 202. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.662 |
Model: | OLS | Adj. R-squared: | 0.629 |
Method: | Least Squares | F-statistic: | 19.61 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.93e-05 |
Time: | 04:02:56 | Log-Likelihood: | -100.62 |
No. Observations: | 23 | AIC: | 207.2 |
Df Residuals: | 20 | BIC: | 210.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 98.2897 | 50.084 | 1.962 | 0.064 | -6.185 202.764 |
C(dose)[T.1] | 52.4737 | 8.657 | 6.061 | 0.000 | 34.414 70.533 |
expression | -6.6092 | 7.456 | -0.886 | 0.386 | -22.162 8.944 |
Omnibus: | 0.008 | Durbin-Watson: | 1.908 |
Prob(Omnibus): | 0.996 | Jarque-Bera (JB): | 0.138 |
Skew: | -0.034 | Prob(JB): | 0.933 |
Kurtosis: | 2.627 | Cond. No. | 79.3 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:02:56 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.042 |
Model: | OLS | Adj. R-squared: | -0.004 |
Method: | Least Squares | F-statistic: | 0.9221 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.348 |
Time: | 04:02:56 | Log-Likelihood: | -112.61 |
No. Observations: | 23 | AIC: | 229.2 |
Df Residuals: | 21 | BIC: | 231.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 156.9822 | 80.770 | 1.944 | 0.065 | -10.989 324.954 |
expression | -11.6940 | 12.178 | -0.960 | 0.348 | -37.019 13.631 |
Omnibus: | 3.538 | Durbin-Watson: | 2.496 |
Prob(Omnibus): | 0.171 | Jarque-Bera (JB): | 1.380 |
Skew: | 0.024 | Prob(JB): | 0.502 |
Kurtosis: | 1.801 | Cond. No. | 77.6 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.629 | 0.081 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.577 |
Model: | OLS | Adj. R-squared: | 0.462 |
Method: | Least Squares | F-statistic: | 5.007 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0198 |
Time: | 04:02:56 | Log-Likelihood: | -68.843 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 11 | BIC: | 148.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 194.9433 | 173.242 | 1.125 | 0.284 | -186.360 576.247 |
C(dose)[T.1] | 68.0067 | 194.314 | 0.350 | 0.733 | -359.676 495.689 |
expression | -20.4274 | 27.702 | -0.737 | 0.476 | -81.398 40.543 |
expression:C(dose)[T.1] | -3.5613 | 31.192 | -0.114 | 0.911 | -72.214 65.092 |
Omnibus: | 1.437 | Durbin-Watson: | 0.584 |
Prob(Omnibus): | 0.488 | Jarque-Bera (JB): | 0.963 |
Skew: | -0.313 | Prob(JB): | 0.618 |
Kurtosis: | 1.928 | Cond. No. | 259. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.577 |
Model: | OLS | Adj. R-squared: | 0.506 |
Method: | Least Squares | F-statistic: | 8.176 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00575 |
Time: | 04:02:56 | Log-Likelihood: | -68.852 |
No. Observations: | 15 | AIC: | 143.7 |
Df Residuals: | 12 | BIC: | 145.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 212.4772 | 76.809 | 2.766 | 0.017 | 45.125 379.829 |
C(dose)[T.1] | 45.8832 | 13.901 | 3.301 | 0.006 | 15.595 76.171 |
expression | -23.2362 | 12.198 | -1.905 | 0.081 | -49.814 3.341 |
Omnibus: | 1.604 | Durbin-Watson: | 0.611 |
Prob(Omnibus): | 0.448 | Jarque-Bera (JB): | 1.007 |
Skew: | -0.312 | Prob(JB): | 0.604 |
Kurtosis: | 1.895 | Cond. No. | 71.2 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:02:56 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.193 |
Model: | OLS | Adj. R-squared: | 0.130 |
Method: | Least Squares | F-statistic: | 3.099 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.102 |
Time: | 04:02:56 | Log-Likelihood: | -73.696 |
No. Observations: | 15 | AIC: | 151.4 |
Df Residuals: | 13 | BIC: | 152.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 268.0122 | 99.455 | 2.695 | 0.018 | 53.153 482.871 |
expression | -28.2739 | 16.061 | -1.760 | 0.102 | -62.971 6.423 |
Omnibus: | 0.436 | Durbin-Watson: | 1.681 |
Prob(Omnibus): | 0.804 | Jarque-Bera (JB): | 0.539 |
Skew: | 0.263 | Prob(JB): | 0.764 |
Kurtosis: | 2.235 | Cond. No. | 69.2 |