AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.070 0.166 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.685
Model: OLS Adj. R-squared: 0.635
Method: Least Squares F-statistic: 13.76
Date: Thu, 21 Nov 2024 Prob (F-statistic): 5.25e-05
Time: 04:46:28 Log-Likelihood: -99.824
No. Observations: 23 AIC: 207.6
Df Residuals: 19 BIC: 212.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 275.3228 242.859 1.134 0.271 -232.987 783.632
C(dose)[T.1] 212.5535 409.539 0.519 0.610 -644.622 1069.729
expression -21.5832 23.699 -0.911 0.374 -71.185 28.019
expression:C(dose)[T.1] -17.2474 41.167 -0.419 0.680 -103.411 68.916
Omnibus: 0.053 Durbin-Watson: 2.071
Prob(Omnibus): 0.974 Jarque-Bera (JB): 0.083
Skew: 0.051 Prob(JB): 0.959
Kurtosis: 2.724 Cond. No. 1.17e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.682
Model: OLS Adj. R-squared: 0.650
Method: Least Squares F-statistic: 21.44
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.06e-05
Time: 04:46:28 Log-Likelihood: -99.930
No. Observations: 23 AIC: 205.9
Df Residuals: 20 BIC: 209.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 333.8789 194.474 1.717 0.101 -71.786 739.543
C(dose)[T.1] 41.0490 11.943 3.437 0.003 16.135 65.963
expression -27.2989 18.974 -1.439 0.166 -66.879 12.281
Omnibus: 0.027 Durbin-Watson: 2.097
Prob(Omnibus): 0.987 Jarque-Bera (JB): 0.236
Skew: -0.017 Prob(JB): 0.889
Kurtosis: 2.505 Cond. No. 473.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:46:28 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.494
Model: OLS Adj. R-squared: 0.470
Method: Least Squares F-statistic: 20.51
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000183
Time: 04:46:28 Log-Likelihood: -105.27
No. Observations: 23 AIC: 214.5
Df Residuals: 21 BIC: 216.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 821.2448 163.805 5.014 0.000 480.593 1161.896
expression -73.9348 16.324 -4.529 0.000 -107.883 -39.986
Omnibus: 0.796 Durbin-Watson: 2.387
Prob(Omnibus): 0.672 Jarque-Bera (JB): 0.074
Skew: -0.003 Prob(JB): 0.964
Kurtosis: 3.277 Cond. No. 323.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.277 0.608 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.566
Model: OLS Adj. R-squared: 0.447
Method: Least Squares F-statistic: 4.774
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0229
Time: 04:46:28 Log-Likelihood: -69.047
No. Observations: 15 AIC: 146.1
Df Residuals: 11 BIC: 148.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 1063.3564 659.527 1.612 0.135 -388.253 2514.965
C(dose)[T.1] -1543.9867 980.745 -1.574 0.144 -3702.592 614.619
expression -92.5485 61.280 -1.510 0.159 -227.424 42.327
expression:C(dose)[T.1] 147.8309 90.931 1.626 0.132 -52.307 347.969
Omnibus: 1.621 Durbin-Watson: 1.204
Prob(Omnibus): 0.445 Jarque-Bera (JB): 1.254
Skew: -0.643 Prob(JB): 0.534
Kurtosis: 2.407 Cond. No. 1.91e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.461
Model: OLS Adj. R-squared: 0.371
Method: Least Squares F-statistic: 5.136
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0245
Time: 04:46:28 Log-Likelihood: -70.662
No. Observations: 15 AIC: 147.3
Df Residuals: 12 BIC: 149.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 340.8629 519.610 0.656 0.524 -791.269 1472.995
C(dose)[T.1] 50.2777 15.696 3.203 0.008 16.079 84.476
expression -25.4094 48.274 -0.526 0.608 -130.590 79.771
Omnibus: 3.048 Durbin-Watson: 0.993
Prob(Omnibus): 0.218 Jarque-Bera (JB): 1.721
Skew: -0.830 Prob(JB): 0.423
Kurtosis: 2.986 Cond. No. 729.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:46:28 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.076
Method: Least Squares F-statistic: 0.006819
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.935
Time: 04:46:28 Log-Likelihood: -75.296
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 149.4375 675.432 0.221 0.828 -1309.745 1608.620
expression -5.1717 62.627 -0.083 0.935 -140.468 130.125
Omnibus: 0.747 Durbin-Watson: 1.648
Prob(Omnibus): 0.688 Jarque-Bera (JB): 0.637
Skew: 0.082 Prob(JB): 0.727
Kurtosis: 2.004 Cond. No. 723.