AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.070 | 0.166 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.685 |
Model: | OLS | Adj. R-squared: | 0.635 |
Method: | Least Squares | F-statistic: | 13.76 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 5.25e-05 |
Time: | 04:46:28 | Log-Likelihood: | -99.824 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 19 | BIC: | 212.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 275.3228 | 242.859 | 1.134 | 0.271 | -232.987 783.632 |
C(dose)[T.1] | 212.5535 | 409.539 | 0.519 | 0.610 | -644.622 1069.729 |
expression | -21.5832 | 23.699 | -0.911 | 0.374 | -71.185 28.019 |
expression:C(dose)[T.1] | -17.2474 | 41.167 | -0.419 | 0.680 | -103.411 68.916 |
Omnibus: | 0.053 | Durbin-Watson: | 2.071 |
Prob(Omnibus): | 0.974 | Jarque-Bera (JB): | 0.083 |
Skew: | 0.051 | Prob(JB): | 0.959 |
Kurtosis: | 2.724 | Cond. No. | 1.17e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.682 |
Model: | OLS | Adj. R-squared: | 0.650 |
Method: | Least Squares | F-statistic: | 21.44 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.06e-05 |
Time: | 04:46:28 | Log-Likelihood: | -99.930 |
No. Observations: | 23 | AIC: | 205.9 |
Df Residuals: | 20 | BIC: | 209.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 333.8789 | 194.474 | 1.717 | 0.101 | -71.786 739.543 |
C(dose)[T.1] | 41.0490 | 11.943 | 3.437 | 0.003 | 16.135 65.963 |
expression | -27.2989 | 18.974 | -1.439 | 0.166 | -66.879 12.281 |
Omnibus: | 0.027 | Durbin-Watson: | 2.097 |
Prob(Omnibus): | 0.987 | Jarque-Bera (JB): | 0.236 |
Skew: | -0.017 | Prob(JB): | 0.889 |
Kurtosis: | 2.505 | Cond. No. | 473. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:46:28 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.494 |
Model: | OLS | Adj. R-squared: | 0.470 |
Method: | Least Squares | F-statistic: | 20.51 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000183 |
Time: | 04:46:28 | Log-Likelihood: | -105.27 |
No. Observations: | 23 | AIC: | 214.5 |
Df Residuals: | 21 | BIC: | 216.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 821.2448 | 163.805 | 5.014 | 0.000 | 480.593 1161.896 |
expression | -73.9348 | 16.324 | -4.529 | 0.000 | -107.883 -39.986 |
Omnibus: | 0.796 | Durbin-Watson: | 2.387 |
Prob(Omnibus): | 0.672 | Jarque-Bera (JB): | 0.074 |
Skew: | -0.003 | Prob(JB): | 0.964 |
Kurtosis: | 3.277 | Cond. No. | 323. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.277 | 0.608 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.566 |
Model: | OLS | Adj. R-squared: | 0.447 |
Method: | Least Squares | F-statistic: | 4.774 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0229 |
Time: | 04:46:28 | Log-Likelihood: | -69.047 |
No. Observations: | 15 | AIC: | 146.1 |
Df Residuals: | 11 | BIC: | 148.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 1063.3564 | 659.527 | 1.612 | 0.135 | -388.253 2514.965 |
C(dose)[T.1] | -1543.9867 | 980.745 | -1.574 | 0.144 | -3702.592 614.619 |
expression | -92.5485 | 61.280 | -1.510 | 0.159 | -227.424 42.327 |
expression:C(dose)[T.1] | 147.8309 | 90.931 | 1.626 | 0.132 | -52.307 347.969 |
Omnibus: | 1.621 | Durbin-Watson: | 1.204 |
Prob(Omnibus): | 0.445 | Jarque-Bera (JB): | 1.254 |
Skew: | -0.643 | Prob(JB): | 0.534 |
Kurtosis: | 2.407 | Cond. No. | 1.91e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.461 |
Model: | OLS | Adj. R-squared: | 0.371 |
Method: | Least Squares | F-statistic: | 5.136 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0245 |
Time: | 04:46:28 | Log-Likelihood: | -70.662 |
No. Observations: | 15 | AIC: | 147.3 |
Df Residuals: | 12 | BIC: | 149.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 340.8629 | 519.610 | 0.656 | 0.524 | -791.269 1472.995 |
C(dose)[T.1] | 50.2777 | 15.696 | 3.203 | 0.008 | 16.079 84.476 |
expression | -25.4094 | 48.274 | -0.526 | 0.608 | -130.590 79.771 |
Omnibus: | 3.048 | Durbin-Watson: | 0.993 |
Prob(Omnibus): | 0.218 | Jarque-Bera (JB): | 1.721 |
Skew: | -0.830 | Prob(JB): | 0.423 |
Kurtosis: | 2.986 | Cond. No. | 729. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:46:28 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.001 |
Model: | OLS | Adj. R-squared: | -0.076 |
Method: | Least Squares | F-statistic: | 0.006819 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.935 |
Time: | 04:46:28 | Log-Likelihood: | -75.296 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 149.4375 | 675.432 | 0.221 | 0.828 | -1309.745 1608.620 |
expression | -5.1717 | 62.627 | -0.083 | 0.935 | -140.468 130.125 |
Omnibus: | 0.747 | Durbin-Watson: | 1.648 |
Prob(Omnibus): | 0.688 | Jarque-Bera (JB): | 0.637 |
Skew: | 0.082 | Prob(JB): | 0.727 |
Kurtosis: | 2.004 | Cond. No. | 723. |