AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.183 0.290 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.672
Model: OLS Adj. R-squared: 0.620
Method: Least Squares F-statistic: 12.97
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.64e-05
Time: 04:56:44 Log-Likelihood: -100.29
No. Observations: 23 AIC: 208.6
Df Residuals: 19 BIC: 213.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 195.3830 130.664 1.495 0.151 -78.099 468.865
C(dose)[T.1] -34.9828 187.200 -0.187 0.854 -426.797 356.831
expression -18.5233 17.126 -1.082 0.293 -54.368 17.322
expression:C(dose)[T.1] 11.1057 25.426 0.437 0.667 -42.111 64.322
Omnibus: 0.928 Durbin-Watson: 1.898
Prob(Omnibus): 0.629 Jarque-Bera (JB): 0.753
Skew: 0.030 Prob(JB): 0.686
Kurtosis: 2.116 Cond. No. 412.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.669
Model: OLS Adj. R-squared: 0.636
Method: Least Squares F-statistic: 20.18
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.60e-05
Time: 04:56:44 Log-Likelihood: -100.40
No. Observations: 23 AIC: 206.8
Df Residuals: 20 BIC: 210.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 156.9813 94.686 1.658 0.113 -40.529 354.492
C(dose)[T.1] 46.6501 10.508 4.439 0.000 24.730 68.570
expression -13.4846 12.399 -1.088 0.290 -39.349 12.380
Omnibus: 0.846 Durbin-Watson: 1.960
Prob(Omnibus): 0.655 Jarque-Bera (JB): 0.732
Skew: 0.081 Prob(JB): 0.693
Kurtosis: 2.141 Cond. No. 168.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:56:44 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.342
Model: OLS Adj. R-squared: 0.311
Method: Least Squares F-statistic: 10.92
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00337
Time: 04:56:44 Log-Likelihood: -108.29
No. Observations: 23 AIC: 220.6
Df Residuals: 21 BIC: 222.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 417.1367 102.267 4.079 0.001 204.460 629.813
expression -45.6941 13.827 -3.305 0.003 -74.448 -16.940
Omnibus: 0.495 Durbin-Watson: 2.201
Prob(Omnibus): 0.781 Jarque-Bera (JB): 0.585
Skew: 0.282 Prob(JB): 0.746
Kurtosis: 2.459 Cond. No. 132.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.641 0.439 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.484
Model: OLS Adj. R-squared: 0.343
Method: Least Squares F-statistic: 3.435
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0557
Time: 04:56:44 Log-Likelihood: -70.342
No. Observations: 15 AIC: 148.7
Df Residuals: 11 BIC: 151.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -15.0696 194.443 -0.078 0.940 -443.035 412.895
C(dose)[T.1] -95.6227 360.182 -0.265 0.796 -888.377 697.132
expression 10.1139 23.795 0.425 0.679 -42.259 62.487
expression:C(dose)[T.1] 16.3864 42.590 0.385 0.708 -77.353 110.126
Omnibus: 2.580 Durbin-Watson: 0.700
Prob(Omnibus): 0.275 Jarque-Bera (JB): 1.816
Skew: -0.825 Prob(JB): 0.403
Kurtosis: 2.568 Cond. No. 477.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.477
Model: OLS Adj. R-squared: 0.390
Method: Least Squares F-statistic: 5.466
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0205
Time: 04:56:44 Log-Likelihood: -70.443
No. Observations: 15 AIC: 146.9
Df Residuals: 12 BIC: 149.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -56.7927 155.560 -0.365 0.721 -395.728 282.143
C(dose)[T.1] 42.7849 17.300 2.473 0.029 5.090 80.479
expression 15.2290 19.021 0.801 0.439 -26.215 56.673
Omnibus: 2.920 Durbin-Watson: 0.742
Prob(Omnibus): 0.232 Jarque-Bera (JB): 2.029
Skew: -0.880 Prob(JB): 0.362
Kurtosis: 2.610 Cond. No. 174.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:56:44 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.210
Model: OLS Adj. R-squared: 0.149
Method: Least Squares F-statistic: 3.456
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0858
Time: 04:56:44 Log-Likelihood: -73.532
No. Observations: 15 AIC: 151.1
Df Residuals: 13 BIC: 152.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -216.4787 167.068 -1.296 0.218 -577.408 144.450
expression 37.0038 19.904 1.859 0.086 -5.996 80.004
Omnibus: 0.410 Durbin-Watson: 1.374
Prob(Omnibus): 0.815 Jarque-Bera (JB): 0.504
Skew: -0.049 Prob(JB): 0.777
Kurtosis: 2.108 Cond. No. 157.