AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.136 0.299 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.674
Model: OLS Adj. R-squared: 0.623
Method: Least Squares F-statistic: 13.10
Date: Mon, 07 Apr 2025 Prob (F-statistic): 7.20e-05
Time: 09:18:56 Log-Likelihood: -100.21
No. Observations: 23 AIC: 208.4
Df Residuals: 19 BIC: 213.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -3.2929 49.503 -0.067 0.948 -106.905 100.319
C(dose)[T.1] 95.3961 72.501 1.316 0.204 -56.350 247.142
expression 11.6952 9.994 1.170 0.256 -9.223 32.614
expression:C(dose)[T.1] -8.6278 14.459 -0.597 0.558 -38.890 21.634
Omnibus: 0.587 Durbin-Watson: 1.936
Prob(Omnibus): 0.746 Jarque-Bera (JB): 0.618
Skew: -0.040 Prob(JB): 0.734
Kurtosis: 2.201 Cond. No. 112.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.668
Model: OLS Adj. R-squared: 0.635
Method: Least Squares F-statistic: 20.11
Date: Mon, 07 Apr 2025 Prob (F-statistic): 1.63e-05
Time: 09:18:56 Log-Likelihood: -100.43
No. Observations: 23 AIC: 206.9
Df Residuals: 20 BIC: 210.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 16.9762 35.427 0.479 0.637 -56.923 90.876
C(dose)[T.1] 52.4463 8.572 6.118 0.000 34.566 70.327
expression 7.5727 7.105 1.066 0.299 -7.248 22.393
Omnibus: 0.448 Durbin-Watson: 1.882
Prob(Omnibus): 0.799 Jarque-Bera (JB): 0.554
Skew: -0.060 Prob(JB): 0.758
Kurtosis: 2.249 Cond. No. 43.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Mon, 07 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 09:18:56 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.046
Model: OLS Adj. R-squared: 0.001
Method: Least Squares F-statistic: 1.020
Date: Mon, 07 Apr 2025 Prob (F-statistic): 0.324
Time: 09:18:56 Log-Likelihood: -112.56
No. Observations: 23 AIC: 229.1
Df Residuals: 21 BIC: 231.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 20.9797 58.579 0.358 0.724 -100.842 142.802
expression 11.8115 11.694 1.010 0.324 -12.508 36.131
Omnibus: 4.128 Durbin-Watson: 2.561
Prob(Omnibus): 0.127 Jarque-Bera (JB): 1.804
Skew: 0.334 Prob(JB): 0.406
Kurtosis: 1.802 Cond. No. 43.3

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.001 0.978 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.489
Model: OLS Adj. R-squared: 0.350
Method: Least Squares F-statistic: 3.510
Date: Mon, 07 Apr 2025 Prob (F-statistic): 0.0528
Time: 09:18:56 Log-Likelihood: -70.264
No. Observations: 15 AIC: 148.5
Df Residuals: 11 BIC: 151.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 122.3156 77.789 1.572 0.144 -48.897 293.528
C(dose)[T.1] -38.2497 95.546 -0.400 0.697 -248.545 172.045
expression -11.4591 16.060 -0.714 0.490 -46.808 23.889
expression:C(dose)[T.1] 19.0385 20.455 0.931 0.372 -25.982 64.059
Omnibus: 1.707 Durbin-Watson: 1.117
Prob(Omnibus): 0.426 Jarque-Bera (JB): 1.113
Skew: -0.646 Prob(JB): 0.573
Kurtosis: 2.668 Cond. No. 81.4

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 4.886
Date: Mon, 07 Apr 2025 Prob (F-statistic): 0.0280
Time: 09:18:56 Log-Likelihood: -70.833
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 66.0974 48.747 1.356 0.200 -40.113 172.308
C(dose)[T.1] 49.3337 16.480 2.994 0.011 13.426 85.241
expression 0.2779 9.890 0.028 0.978 -21.271 21.827
Omnibus: 2.721 Durbin-Watson: 0.808
Prob(Omnibus): 0.257 Jarque-Bera (JB): 1.868
Skew: -0.844 Prob(JB): 0.393
Kurtosis: 2.626 Cond. No. 30.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Mon, 07 Apr 2025 Prob (F-statistic): 0.00629
Time: 09:18:56 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.037
Model: OLS Adj. R-squared: -0.037
Method: Least Squares F-statistic: 0.5023
Date: Mon, 07 Apr 2025 Prob (F-statistic): 0.491
Time: 09:18:56 Log-Likelihood: -75.016
No. Observations: 15 AIC: 154.0
Df Residuals: 13 BIC: 155.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 132.1423 55.196 2.394 0.032 12.898 251.387
expression -8.5004 11.994 -0.709 0.491 -34.412 17.411
Omnibus: 1.484 Durbin-Watson: 1.412
Prob(Omnibus): 0.476 Jarque-Bera (JB): 0.897
Skew: 0.208 Prob(JB): 0.638
Kurtosis: 1.876 Cond. No. 26.6