AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.815 | 0.378 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.664 |
Model: | OLS | Adj. R-squared: | 0.611 |
Method: | Least Squares | F-statistic: | 12.53 |
Date: | Mon, 03 Feb 2025 | Prob (F-statistic): | 9.46e-05 |
Time: | 23:51:08 | Log-Likelihood: | -100.55 |
No. Observations: | 23 | AIC: | 209.1 |
Df Residuals: | 19 | BIC: | 213.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -33.7839 | 186.730 | -0.181 | 0.858 | -424.615 357.047 |
C(dose)[T.1] | -38.5915 | 292.540 | -0.132 | 0.896 | -650.885 573.702 |
expression | 9.8205 | 20.829 | 0.471 | 0.643 | -33.776 53.417 |
expression:C(dose)[T.1] | 9.1420 | 31.571 | 0.290 | 0.775 | -56.936 75.220 |
Omnibus: | 0.027 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.986 | Jarque-Bera (JB): | 0.217 |
Skew: | -0.055 | Prob(JB): | 0.897 |
Kurtosis: | 2.537 | Cond. No. | 783. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.663 |
Model: | OLS | Adj. R-squared: | 0.629 |
Method: | Least Squares | F-statistic: | 19.66 |
Date: | Mon, 03 Feb 2025 | Prob (F-statistic): | 1.90e-05 |
Time: | 23:51:08 | Log-Likelihood: | -100.60 |
No. Observations: | 23 | AIC: | 207.2 |
Df Residuals: | 20 | BIC: | 210.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -69.4400 | 137.127 | -0.506 | 0.618 | -355.482 216.602 |
C(dose)[T.1] | 46.0482 | 11.795 | 3.904 | 0.001 | 21.445 70.652 |
expression | 13.8000 | 15.290 | 0.903 | 0.378 | -18.094 45.694 |
Omnibus: | 0.016 | Durbin-Watson: | 1.860 |
Prob(Omnibus): | 0.992 | Jarque-Bera (JB): | 0.213 |
Skew: | -0.027 | Prob(JB): | 0.899 |
Kurtosis: | 2.532 | Cond. No. | 299. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Mon, 03 Feb 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 23:51:08 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.406 |
Model: | OLS | Adj. R-squared: | 0.378 |
Method: | Least Squares | F-statistic: | 14.34 |
Date: | Mon, 03 Feb 2025 | Prob (F-statistic): | 0.00108 |
Time: | 23:51:08 | Log-Likelihood: | -107.12 |
No. Observations: | 23 | AIC: | 218.2 |
Df Residuals: | 21 | BIC: | 220.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -423.9485 | 133.112 | -3.185 | 0.004 | -700.770 -147.127 |
expression | 54.6710 | 14.436 | 3.787 | 0.001 | 24.649 84.693 |
Omnibus: | 2.744 | Durbin-Watson: | 1.958 |
Prob(Omnibus): | 0.254 | Jarque-Bera (JB): | 1.232 |
Skew: | 0.036 | Prob(JB): | 0.540 |
Kurtosis: | 1.868 | Cond. No. | 223. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.077 | 0.320 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.503 |
Model: | OLS | Adj. R-squared: | 0.367 |
Method: | Least Squares | F-statistic: | 3.705 |
Date: | Mon, 03 Feb 2025 | Prob (F-statistic): | 0.0460 |
Time: | 23:51:08 | Log-Likelihood: | -70.062 |
No. Observations: | 15 | AIC: | 148.1 |
Df Residuals: | 11 | BIC: | 151.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -131.6327 | 194.018 | -0.678 | 0.512 | -558.663 295.397 |
C(dose)[T.1] | 173.0982 | 282.635 | 0.612 | 0.553 | -448.978 795.174 |
expression | 22.9712 | 22.350 | 1.028 | 0.326 | -26.222 72.164 |
expression:C(dose)[T.1] | -14.1654 | 32.830 | -0.431 | 0.674 | -86.424 58.093 |
Omnibus: | 2.360 | Durbin-Watson: | 0.683 |
Prob(Omnibus): | 0.307 | Jarque-Bera (JB): | 1.684 |
Skew: | -0.787 | Prob(JB): | 0.431 |
Kurtosis: | 2.535 | Cond. No. | 414. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.494 |
Model: | OLS | Adj. R-squared: | 0.410 |
Method: | Least Squares | F-statistic: | 5.862 |
Date: | Mon, 03 Feb 2025 | Prob (F-statistic): | 0.0167 |
Time: | 23:51:08 | Log-Likelihood: | -70.188 |
No. Observations: | 15 | AIC: | 146.4 |
Df Residuals: | 12 | BIC: | 148.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -74.7388 | 137.414 | -0.544 | 0.596 | -374.137 224.660 |
C(dose)[T.1] | 51.3369 | 15.218 | 3.373 | 0.006 | 18.180 84.494 |
expression | 16.4058 | 15.806 | 1.038 | 0.320 | -18.033 50.845 |
Omnibus: | 2.279 | Durbin-Watson: | 0.697 |
Prob(Omnibus): | 0.320 | Jarque-Bera (JB): | 1.667 |
Skew: | -0.774 | Prob(JB): | 0.434 |
Kurtosis: | 2.480 | Cond. No. | 160. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Mon, 03 Feb 2025 | Prob (F-statistic): | 0.00629 |
Time: | 23:51:08 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.014 |
Model: | OLS | Adj. R-squared: | -0.061 |
Method: | Least Squares | F-statistic: | 0.1911 |
Date: | Mon, 03 Feb 2025 | Prob (F-statistic): | 0.669 |
Time: | 23:51:08 | Log-Likelihood: | -75.191 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 14.7555 | 180.816 | 0.082 | 0.936 | -375.873 405.384 |
expression | 9.1799 | 21.002 | 0.437 | 0.669 | -36.192 54.552 |
Omnibus: | 1.652 | Durbin-Watson: | 1.697 |
Prob(Omnibus): | 0.438 | Jarque-Bera (JB): | 0.904 |
Skew: | 0.145 | Prob(JB): | 0.636 |
Kurtosis: | 1.833 | Cond. No. | 156. |