AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.055 | 0.817 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.658 |
Model: | OLS | Adj. R-squared: | 0.604 |
Method: | Least Squares | F-statistic: | 12.19 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000112 |
Time: | 04:05:04 | Log-Likelihood: | -100.76 |
No. Observations: | 23 | AIC: | 209.5 |
Df Residuals: | 19 | BIC: | 214.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 6.0641 | 81.656 | 0.074 | 0.942 | -164.844 176.972 |
C(dose)[T.1] | 145.0129 | 138.309 | 1.048 | 0.308 | -144.472 434.497 |
expression | 7.3141 | 12.370 | 0.591 | 0.561 | -18.577 33.205 |
expression:C(dose)[T.1] | -13.6172 | 20.333 | -0.670 | 0.511 | -56.174 28.940 |
Omnibus: | 0.441 | Durbin-Watson: | 2.004 |
Prob(Omnibus): | 0.802 | Jarque-Bera (JB): | 0.552 |
Skew: | -0.074 | Prob(JB): | 0.759 |
Kurtosis: | 2.255 | Cond. No. | 264. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.57 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.76e-05 |
Time: | 04:05:04 | Log-Likelihood: | -101.03 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 39.2406 | 64.012 | 0.613 | 0.547 | -94.286 172.767 |
C(dose)[T.1] | 52.6002 | 9.303 | 5.654 | 0.000 | 33.195 72.005 |
expression | 2.2739 | 9.681 | 0.235 | 0.817 | -17.921 22.468 |
Omnibus: | 0.358 | Durbin-Watson: | 1.881 |
Prob(Omnibus): | 0.836 | Jarque-Bera (JB): | 0.505 |
Skew: | 0.040 | Prob(JB): | 0.777 |
Kurtosis: | 2.279 | Cond. No. | 101. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:05:04 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.091 |
Model: | OLS | Adj. R-squared: | 0.047 |
Method: | Least Squares | F-statistic: | 2.091 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.163 |
Time: | 04:05:04 | Log-Likelihood: | -112.01 |
No. Observations: | 23 | AIC: | 228.0 |
Df Residuals: | 21 | BIC: | 230.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -59.9787 | 96.843 | -0.619 | 0.542 | -261.374 141.417 |
expression | 20.7346 | 14.338 | 1.446 | 0.163 | -9.082 50.551 |
Omnibus: | 1.028 | Durbin-Watson: | 2.540 |
Prob(Omnibus): | 0.598 | Jarque-Bera (JB): | 0.968 |
Skew: | 0.341 | Prob(JB): | 0.616 |
Kurtosis: | 2.262 | Cond. No. | 97.1 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.136 | 0.307 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.510 |
Model: | OLS | Adj. R-squared: | 0.376 |
Method: | Least Squares | F-statistic: | 3.814 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0427 |
Time: | 04:05:04 | Log-Likelihood: | -69.952 |
No. Observations: | 15 | AIC: | 147.9 |
Df Residuals: | 11 | BIC: | 150.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -175.0331 | 236.113 | -0.741 | 0.474 | -694.715 344.649 |
C(dose)[T.1] | 202.9571 | 284.515 | 0.713 | 0.490 | -423.256 829.170 |
expression | 36.7934 | 35.789 | 1.028 | 0.326 | -41.977 115.564 |
expression:C(dose)[T.1] | -23.5237 | 42.922 | -0.548 | 0.595 | -117.994 70.947 |
Omnibus: | 1.754 | Durbin-Watson: | 0.912 |
Prob(Omnibus): | 0.416 | Jarque-Bera (JB): | 1.171 |
Skew: | -0.429 | Prob(JB): | 0.557 |
Kurtosis: | 1.934 | Cond. No. | 363. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.496 |
Model: | OLS | Adj. R-squared: | 0.413 |
Method: | Least Squares | F-statistic: | 5.916 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0163 |
Time: | 04:05:04 | Log-Likelihood: | -70.154 |
No. Observations: | 15 | AIC: | 146.3 |
Df Residuals: | 12 | BIC: | 148.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -67.2586 | 126.820 | -0.530 | 0.606 | -343.577 209.059 |
C(dose)[T.1] | 47.2611 | 15.153 | 3.119 | 0.009 | 14.246 80.276 |
expression | 20.4387 | 19.173 | 1.066 | 0.307 | -21.335 62.212 |
Omnibus: | 1.726 | Durbin-Watson: | 0.967 |
Prob(Omnibus): | 0.422 | Jarque-Bera (JB): | 1.114 |
Skew: | -0.386 | Prob(JB): | 0.573 |
Kurtosis: | 1.911 | Cond. No. | 115. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:05:04 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.088 |
Model: | OLS | Adj. R-squared: | 0.018 |
Method: | Least Squares | F-statistic: | 1.258 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.282 |
Time: | 04:05:04 | Log-Likelihood: | -74.607 |
No. Observations: | 15 | AIC: | 153.2 |
Df Residuals: | 13 | BIC: | 154.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -89.6287 | 163.695 | -0.548 | 0.593 | -443.269 264.012 |
expression | 27.6034 | 24.608 | 1.122 | 0.282 | -25.560 80.766 |
Omnibus: | 1.227 | Durbin-Watson: | 1.641 |
Prob(Omnibus): | 0.541 | Jarque-Bera (JB): | 0.984 |
Skew: | 0.416 | Prob(JB): | 0.611 |
Kurtosis: | 2.060 | Cond. No. | 115. |