AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.122 0.730 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.596
Method: Least Squares F-statistic: 11.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000134
Time: 05:11:32 Log-Likelihood: -100.98
No. Observations: 23 AIC: 210.0
Df Residuals: 19 BIC: 214.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 57.7285 53.534 1.078 0.294 -54.320 169.777
C(dose)[T.1] 62.1550 64.139 0.969 0.345 -72.090 196.400
expression -1.1762 17.767 -0.066 0.948 -38.363 36.011
expression:C(dose)[T.1] -2.4693 20.517 -0.120 0.905 -45.412 40.474
Omnibus: 0.185 Durbin-Watson: 1.825
Prob(Omnibus): 0.912 Jarque-Bera (JB): 0.395
Skew: 0.035 Prob(JB): 0.821
Kurtosis: 2.362 Cond. No. 73.9

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 18.67
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.67e-05
Time: 05:11:32 Log-Likelihood: -100.99
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 63.2704 26.624 2.376 0.028 7.733 118.808
C(dose)[T.1] 54.5230 9.379 5.814 0.000 34.960 74.086
expression -3.0279 8.664 -0.349 0.730 -21.100 15.044
Omnibus: 0.279 Durbin-Watson: 1.829
Prob(Omnibus): 0.870 Jarque-Bera (JB): 0.458
Skew: 0.033 Prob(JB): 0.795
Kurtosis: 2.312 Cond. No. 21.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:11:32 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.062
Model: OLS Adj. R-squared: 0.017
Method: Least Squares F-statistic: 1.382
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.253
Time: 05:11:32 Log-Likelihood: -112.37
No. Observations: 23 AIC: 228.7
Df Residuals: 21 BIC: 231.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 31.3959 41.701 0.753 0.460 -55.325 118.117
expression 15.1948 12.927 1.175 0.253 -11.689 42.079
Omnibus: 2.804 Durbin-Watson: 2.358
Prob(Omnibus): 0.246 Jarque-Bera (JB): 1.573
Skew: 0.354 Prob(JB): 0.456
Kurtosis: 1.932 Cond. No. 21.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.119 0.103 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.575
Model: OLS Adj. R-squared: 0.459
Method: Least Squares F-statistic: 4.958
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0204
Time: 05:11:32 Log-Likelihood: -68.885
No. Observations: 15 AIC: 145.8
Df Residuals: 11 BIC: 148.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 266.3751 131.002 2.033 0.067 -21.959 554.710
C(dose)[T.1] -42.5770 171.641 -0.248 0.809 -420.355 335.201
expression -73.6236 48.322 -1.524 0.156 -179.981 32.733
expression:C(dose)[T.1] 35.3258 62.395 0.566 0.583 -102.005 172.656
Omnibus: 3.033 Durbin-Watson: 1.293
Prob(Omnibus): 0.219 Jarque-Bera (JB): 1.513
Skew: -0.774 Prob(JB): 0.469
Kurtosis: 3.165 Cond. No. 104.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.562
Model: OLS Adj. R-squared: 0.490
Method: Least Squares F-statistic: 7.714
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00701
Time: 05:11:32 Log-Likelihood: -69.100
No. Observations: 15 AIC: 144.2
Df Residuals: 12 BIC: 146.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 209.1207 80.885 2.585 0.024 32.888 385.353
C(dose)[T.1] 54.2408 14.311 3.790 0.003 23.061 85.421
expression -52.4356 29.692 -1.766 0.103 -117.129 12.257
Omnibus: 2.783 Durbin-Watson: 1.236
Prob(Omnibus): 0.249 Jarque-Bera (JB): 1.405
Skew: -0.748 Prob(JB): 0.495
Kurtosis: 3.101 Cond. No. 36.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:11:32 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.039
Model: OLS Adj. R-squared: -0.035
Method: Least Squares F-statistic: 0.5233
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.482
Time: 05:11:32 Log-Likelihood: -75.004
No. Observations: 15 AIC: 154.0
Df Residuals: 13 BIC: 155.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 176.1964 114.524 1.539 0.148 -71.219 423.611
expression -29.9725 41.434 -0.723 0.482 -119.486 59.541
Omnibus: 2.169 Durbin-Watson: 2.006
Prob(Omnibus): 0.338 Jarque-Bera (JB): 1.068
Skew: 0.232 Prob(JB): 0.586
Kurtosis: 1.778 Cond. No. 35.9