AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.122 | 0.730 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.596 |
Method: | Least Squares | F-statistic: | 11.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000134 |
Time: | 05:11:32 | Log-Likelihood: | -100.98 |
No. Observations: | 23 | AIC: | 210.0 |
Df Residuals: | 19 | BIC: | 214.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 57.7285 | 53.534 | 1.078 | 0.294 | -54.320 169.777 |
C(dose)[T.1] | 62.1550 | 64.139 | 0.969 | 0.345 | -72.090 196.400 |
expression | -1.1762 | 17.767 | -0.066 | 0.948 | -38.363 36.011 |
expression:C(dose)[T.1] | -2.4693 | 20.517 | -0.120 | 0.905 | -45.412 40.474 |
Omnibus: | 0.185 | Durbin-Watson: | 1.825 |
Prob(Omnibus): | 0.912 | Jarque-Bera (JB): | 0.395 |
Skew: | 0.035 | Prob(JB): | 0.821 |
Kurtosis: | 2.362 | Cond. No. | 73.9 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.616 |
Method: | Least Squares | F-statistic: | 18.67 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.67e-05 |
Time: | 05:11:32 | Log-Likelihood: | -100.99 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 63.2704 | 26.624 | 2.376 | 0.028 | 7.733 118.808 |
C(dose)[T.1] | 54.5230 | 9.379 | 5.814 | 0.000 | 34.960 74.086 |
expression | -3.0279 | 8.664 | -0.349 | 0.730 | -21.100 15.044 |
Omnibus: | 0.279 | Durbin-Watson: | 1.829 |
Prob(Omnibus): | 0.870 | Jarque-Bera (JB): | 0.458 |
Skew: | 0.033 | Prob(JB): | 0.795 |
Kurtosis: | 2.312 | Cond. No. | 21.9 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:11:32 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.062 |
Model: | OLS | Adj. R-squared: | 0.017 |
Method: | Least Squares | F-statistic: | 1.382 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.253 |
Time: | 05:11:32 | Log-Likelihood: | -112.37 |
No. Observations: | 23 | AIC: | 228.7 |
Df Residuals: | 21 | BIC: | 231.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 31.3959 | 41.701 | 0.753 | 0.460 | -55.325 118.117 |
expression | 15.1948 | 12.927 | 1.175 | 0.253 | -11.689 42.079 |
Omnibus: | 2.804 | Durbin-Watson: | 2.358 |
Prob(Omnibus): | 0.246 | Jarque-Bera (JB): | 1.573 |
Skew: | 0.354 | Prob(JB): | 0.456 |
Kurtosis: | 1.932 | Cond. No. | 21.0 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.119 | 0.103 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.575 |
Model: | OLS | Adj. R-squared: | 0.459 |
Method: | Least Squares | F-statistic: | 4.958 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0204 |
Time: | 05:11:32 | Log-Likelihood: | -68.885 |
No. Observations: | 15 | AIC: | 145.8 |
Df Residuals: | 11 | BIC: | 148.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 266.3751 | 131.002 | 2.033 | 0.067 | -21.959 554.710 |
C(dose)[T.1] | -42.5770 | 171.641 | -0.248 | 0.809 | -420.355 335.201 |
expression | -73.6236 | 48.322 | -1.524 | 0.156 | -179.981 32.733 |
expression:C(dose)[T.1] | 35.3258 | 62.395 | 0.566 | 0.583 | -102.005 172.656 |
Omnibus: | 3.033 | Durbin-Watson: | 1.293 |
Prob(Omnibus): | 0.219 | Jarque-Bera (JB): | 1.513 |
Skew: | -0.774 | Prob(JB): | 0.469 |
Kurtosis: | 3.165 | Cond. No. | 104. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.562 |
Model: | OLS | Adj. R-squared: | 0.490 |
Method: | Least Squares | F-statistic: | 7.714 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00701 |
Time: | 05:11:32 | Log-Likelihood: | -69.100 |
No. Observations: | 15 | AIC: | 144.2 |
Df Residuals: | 12 | BIC: | 146.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 209.1207 | 80.885 | 2.585 | 0.024 | 32.888 385.353 |
C(dose)[T.1] | 54.2408 | 14.311 | 3.790 | 0.003 | 23.061 85.421 |
expression | -52.4356 | 29.692 | -1.766 | 0.103 | -117.129 12.257 |
Omnibus: | 2.783 | Durbin-Watson: | 1.236 |
Prob(Omnibus): | 0.249 | Jarque-Bera (JB): | 1.405 |
Skew: | -0.748 | Prob(JB): | 0.495 |
Kurtosis: | 3.101 | Cond. No. | 36.8 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:11:32 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.039 |
Model: | OLS | Adj. R-squared: | -0.035 |
Method: | Least Squares | F-statistic: | 0.5233 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.482 |
Time: | 05:11:32 | Log-Likelihood: | -75.004 |
No. Observations: | 15 | AIC: | 154.0 |
Df Residuals: | 13 | BIC: | 155.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 176.1964 | 114.524 | 1.539 | 0.148 | -71.219 423.611 |
expression | -29.9725 | 41.434 | -0.723 | 0.482 | -119.486 59.541 |
Omnibus: | 2.169 | Durbin-Watson: | 2.006 |
Prob(Omnibus): | 0.338 | Jarque-Bera (JB): | 1.068 |
Skew: | 0.232 | Prob(JB): | 0.586 |
Kurtosis: | 1.778 | Cond. No. | 35.9 |