AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.027 0.872 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.675
Model: OLS Adj. R-squared: 0.623
Method: Least Squares F-statistic: 13.14
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.03e-05
Time: 04:36:26 Log-Likelihood: -100.19
No. Observations: 23 AIC: 208.4
Df Residuals: 19 BIC: 212.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 86.2841 48.294 1.787 0.090 -14.796 187.365
C(dose)[T.1] -40.6467 77.418 -0.525 0.606 -202.685 121.392
expression -9.4041 14.050 -0.669 0.511 -38.810 20.002
expression:C(dose)[T.1] 26.1566 21.509 1.216 0.239 -18.862 71.175
Omnibus: 0.329 Durbin-Watson: 1.862
Prob(Omnibus): 0.848 Jarque-Bera (JB): 0.083
Skew: 0.142 Prob(JB): 0.959
Kurtosis: 2.917 Cond. No. 86.5

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.53
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.80e-05
Time: 04:36:26 Log-Likelihood: -101.05
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 48.2178 37.214 1.296 0.210 -29.409 125.844
C(dose)[T.1] 52.8373 9.284 5.691 0.000 33.471 72.203
expression 1.7563 10.765 0.163 0.872 -20.699 24.211
Omnibus: 0.240 Durbin-Watson: 1.927
Prob(Omnibus): 0.887 Jarque-Bera (JB): 0.433
Skew: 0.070 Prob(JB): 0.805
Kurtosis: 2.342 Cond. No. 33.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:36:26 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.082
Model: OLS Adj. R-squared: 0.038
Method: Least Squares F-statistic: 1.874
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.185
Time: 04:36:26 Log-Likelihood: -112.12
No. Observations: 23 AIC: 228.2
Df Residuals: 21 BIC: 230.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 1.7817 57.348 0.031 0.976 -117.480 121.043
expression 21.9726 16.050 1.369 0.185 -11.406 55.351
Omnibus: 1.521 Durbin-Watson: 2.594
Prob(Omnibus): 0.467 Jarque-Bera (JB): 0.993
Skew: 0.157 Prob(JB): 0.609
Kurtosis: 2.032 Cond. No. 31.9

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.561 0.468 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.508
Model: OLS Adj. R-squared: 0.374
Method: Least Squares F-statistic: 3.786
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0435
Time: 04:36:26 Log-Likelihood: -69.980
No. Observations: 15 AIC: 148.0
Df Residuals: 11 BIC: 150.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 38.6736 109.861 0.352 0.731 -203.129 280.477
C(dose)[T.1] -162.9969 241.698 -0.674 0.514 -694.972 368.978
expression 8.3930 31.895 0.263 0.797 -61.807 78.594
expression:C(dose)[T.1] 62.0152 70.465 0.880 0.398 -93.077 217.108
Omnibus: 1.313 Durbin-Watson: 0.633
Prob(Omnibus): 0.519 Jarque-Bera (JB): 1.055
Skew: -0.574 Prob(JB): 0.590
Kurtosis: 2.392 Cond. No. 138.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.473
Model: OLS Adj. R-squared: 0.386
Method: Least Squares F-statistic: 5.394
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0213
Time: 04:36:26 Log-Likelihood: -70.490
No. Observations: 15 AIC: 147.0
Df Residuals: 12 BIC: 149.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -4.8566 97.171 -0.050 0.961 -216.575 206.861
C(dose)[T.1] 49.2787 15.385 3.203 0.008 15.758 82.799
expression 21.0987 28.172 0.749 0.468 -40.283 82.481
Omnibus: 1.859 Durbin-Watson: 0.688
Prob(Omnibus): 0.395 Jarque-Bera (JB): 1.461
Skew: -0.676 Prob(JB): 0.482
Kurtosis: 2.288 Cond. No. 47.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:36:26 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.023
Model: OLS Adj. R-squared: -0.052
Method: Least Squares F-statistic: 0.3079
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.588
Time: 04:36:26 Log-Likelihood: -75.125
No. Observations: 15 AIC: 154.2
Df Residuals: 13 BIC: 155.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 23.6306 126.620 0.187 0.855 -249.915 297.176
expression 20.4546 36.864 0.555 0.588 -59.185 100.094
Omnibus: 1.930 Durbin-Watson: 1.534
Prob(Omnibus): 0.381 Jarque-Bera (JB): 0.939
Skew: 0.073 Prob(JB): 0.625
Kurtosis: 1.783 Cond. No. 47.0