AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.579 0.073 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.702
Model: OLS Adj. R-squared: 0.656
Method: Least Squares F-statistic: 14.95
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.08e-05
Time: 03:41:07 Log-Likelihood: -99.163
No. Observations: 23 AIC: 206.3
Df Residuals: 19 BIC: 210.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -29.8345 78.402 -0.381 0.708 -193.932 134.263
C(dose)[T.1] 62.7817 92.992 0.675 0.508 -131.853 257.416
expression 16.9346 15.756 1.075 0.296 -16.043 49.912
expression:C(dose)[T.1] -1.9573 18.644 -0.105 0.917 -40.980 37.065
Omnibus: 0.245 Durbin-Watson: 2.340
Prob(Omnibus): 0.885 Jarque-Bera (JB): 0.417
Skew: 0.175 Prob(JB): 0.812
Kurtosis: 2.440 Cond. No. 167.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.702
Model: OLS Adj. R-squared: 0.673
Method: Least Squares F-statistic: 23.59
Date: Thu, 21 Nov 2024 Prob (F-statistic): 5.46e-06
Time: 03:41:07 Log-Likelihood: -99.170
No. Observations: 23 AIC: 204.3
Df Residuals: 20 BIC: 207.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -22.8974 41.139 -0.557 0.584 -108.712 62.917
C(dose)[T.1] 53.0581 8.078 6.568 0.000 36.207 69.909
expression 15.5368 8.213 1.892 0.073 -1.595 32.668
Omnibus: 0.244 Durbin-Watson: 2.321
Prob(Omnibus): 0.885 Jarque-Bera (JB): 0.400
Skew: 0.191 Prob(JB): 0.819
Kurtosis: 2.479 Cond. No. 53.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:41:07 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.060
Model: OLS Adj. R-squared: 0.016
Method: Least Squares F-statistic: 1.346
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.259
Time: 03:41:07 Log-Likelihood: -112.39
No. Observations: 23 AIC: 228.8
Df Residuals: 21 BIC: 231.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -2.4171 71.128 -0.034 0.973 -150.336 145.502
expression 16.5215 14.238 1.160 0.259 -13.088 46.131
Omnibus: 2.057 Durbin-Watson: 2.676
Prob(Omnibus): 0.358 Jarque-Bera (JB): 1.274
Skew: 0.285 Prob(JB): 0.529
Kurtosis: 1.997 Cond. No. 52.8

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
4.191 0.063 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.592
Model: OLS Adj. R-squared: 0.481
Method: Least Squares F-statistic: 5.323
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0165
Time: 03:41:07 Log-Likelihood: -68.574
No. Observations: 15 AIC: 145.1
Df Residuals: 11 BIC: 148.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -52.6790 131.004 -0.402 0.695 -341.017 235.659
C(dose)[T.1] 35.8979 152.146 0.236 0.818 -298.974 370.770
expression 25.0497 27.237 0.920 0.377 -34.899 84.998
expression:C(dose)[T.1] 4.3187 32.054 0.135 0.895 -66.232 74.869
Omnibus: 0.236 Durbin-Watson: 1.245
Prob(Omnibus): 0.889 Jarque-Bera (JB): 0.029
Skew: -0.053 Prob(JB): 0.986
Kurtosis: 2.814 Cond. No. 155.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.591
Model: OLS Adj. R-squared: 0.523
Method: Least Squares F-statistic: 8.686
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00465
Time: 03:41:07 Log-Likelihood: -68.587
No. Observations: 15 AIC: 143.2
Df Residuals: 12 BIC: 145.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -67.6303 66.714 -1.014 0.331 -212.988 77.728
C(dose)[T.1] 56.3022 13.988 4.025 0.002 25.825 86.779
expression 28.1679 13.760 2.047 0.063 -1.813 58.148
Omnibus: 0.159 Durbin-Watson: 1.262
Prob(Omnibus): 0.923 Jarque-Bera (JB): 0.053
Skew: -0.064 Prob(JB): 0.974
Kurtosis: 2.738 Cond. No. 48.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:41:07 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.040
Model: OLS Adj. R-squared: -0.034
Method: Least Squares F-statistic: 0.5398
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.476
Time: 03:41:07 Log-Likelihood: -74.995
No. Observations: 15 AIC: 154.0
Df Residuals: 13 BIC: 155.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 26.4468 92.033 0.287 0.778 -172.378 225.271
expression 14.4241 19.633 0.735 0.476 -27.990 56.838
Omnibus: 0.127 Durbin-Watson: 1.746
Prob(Omnibus): 0.938 Jarque-Bera (JB): 0.302
Skew: 0.164 Prob(JB): 0.860
Kurtosis: 2.387 Cond. No. 45.3