AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.014 | 0.908 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.660 |
Model: | OLS | Adj. R-squared: | 0.606 |
Method: | Least Squares | F-statistic: | 12.28 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000107 |
Time: | 05:13:45 | Log-Likelihood: | -100.71 |
No. Observations: | 23 | AIC: | 209.4 |
Df Residuals: | 19 | BIC: | 214.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 146.6522 | 147.426 | 0.995 | 0.332 | -161.915 455.219 |
C(dose)[T.1] | -109.2266 | 214.193 | -0.510 | 0.616 | -557.538 339.085 |
expression | -11.7896 | 18.785 | -0.628 | 0.538 | -51.108 27.529 |
expression:C(dose)[T.1] | 20.0825 | 26.268 | 0.765 | 0.454 | -34.898 75.063 |
Omnibus: | 0.393 | Durbin-Watson: | 1.836 |
Prob(Omnibus): | 0.822 | Jarque-Bera (JB): | 0.522 |
Skew: | -0.020 | Prob(JB): | 0.770 |
Kurtosis: | 2.263 | Cond. No. | 522. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.51 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.81e-05 |
Time: | 05:13:45 | Log-Likelihood: | -101.05 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 66.1201 | 102.066 | 0.648 | 0.524 | -146.785 279.025 |
C(dose)[T.1] | 54.2702 | 11.856 | 4.578 | 0.000 | 29.540 79.000 |
expression | -1.5191 | 12.994 | -0.117 | 0.908 | -28.623 25.585 |
Omnibus: | 0.465 | Durbin-Watson: | 1.873 |
Prob(Omnibus): | 0.793 | Jarque-Bera (JB): | 0.560 |
Skew: | 0.041 | Prob(JB): | 0.756 |
Kurtosis: | 2.240 | Cond. No. | 194. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:13:45 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.282 |
Model: | OLS | Adj. R-squared: | 0.248 |
Method: | Least Squares | F-statistic: | 8.242 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00915 |
Time: | 05:13:45 | Log-Likelihood: | -109.30 |
No. Observations: | 23 | AIC: | 222.6 |
Df Residuals: | 21 | BIC: | 224.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -233.6565 | 109.327 | -2.137 | 0.045 | -461.015 -6.298 |
expression | 38.5220 | 13.418 | 2.871 | 0.009 | 10.617 66.427 |
Omnibus: | 1.853 | Durbin-Watson: | 2.513 |
Prob(Omnibus): | 0.396 | Jarque-Bera (JB): | 1.518 |
Skew: | 0.482 | Prob(JB): | 0.468 |
Kurtosis: | 2.190 | Cond. No. | 148. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.059 | 0.812 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.536 |
Model: | OLS | Adj. R-squared: | 0.410 |
Method: | Least Squares | F-statistic: | 4.240 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0321 |
Time: | 05:13:45 | Log-Likelihood: | -69.537 |
No. Observations: | 15 | AIC: | 147.1 |
Df Residuals: | 11 | BIC: | 149.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -340.1469 | 291.527 | -1.167 | 0.268 | -981.794 301.500 |
C(dose)[T.1] | 500.8513 | 318.786 | 1.571 | 0.144 | -200.793 1202.495 |
expression | 53.3288 | 38.117 | 1.399 | 0.189 | -30.567 137.225 |
expression:C(dose)[T.1] | -59.1136 | 41.685 | -1.418 | 0.184 | -150.861 32.634 |
Omnibus: | 2.545 | Durbin-Watson: | 1.441 |
Prob(Omnibus): | 0.280 | Jarque-Bera (JB): | 1.274 |
Skew: | -0.713 | Prob(JB): | 0.529 |
Kurtosis: | 3.068 | Cond. No. | 507. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.451 |
Model: | OLS | Adj. R-squared: | 0.360 |
Method: | Least Squares | F-statistic: | 4.938 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0272 |
Time: | 05:13:45 | Log-Likelihood: | -70.796 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 37.6178 | 123.320 | 0.305 | 0.766 | -231.073 306.309 |
C(dose)[T.1] | 49.2853 | 15.705 | 3.138 | 0.009 | 15.066 83.504 |
expression | 3.9006 | 16.066 | 0.243 | 0.812 | -31.104 38.905 |
Omnibus: | 2.824 | Durbin-Watson: | 0.809 |
Prob(Omnibus): | 0.244 | Jarque-Bera (JB): | 1.990 |
Skew: | -0.866 | Prob(JB): | 0.370 |
Kurtosis: | 2.573 | Cond. No. | 123. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:13:45 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.001 |
Model: | OLS | Adj. R-squared: | -0.076 |
Method: | Least Squares | F-statistic: | 0.01714 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.898 |
Time: | 05:13:45 | Log-Likelihood: | -75.290 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 72.8680 | 159.205 | 0.458 | 0.655 | -271.073 416.809 |
expression | 2.7257 | 20.822 | 0.131 | 0.898 | -42.257 47.708 |
Omnibus: | 0.836 | Durbin-Watson: | 1.631 |
Prob(Omnibus): | 0.658 | Jarque-Bera (JB): | 0.663 |
Skew: | 0.069 | Prob(JB): | 0.718 |
Kurtosis: | 1.979 | Cond. No. | 122. |