AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.951 | 0.061 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.709 |
Model: | OLS | Adj. R-squared: | 0.663 |
Method: | Least Squares | F-statistic: | 15.40 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.54e-05 |
Time: | 05:15:29 | Log-Likelihood: | -98.925 |
No. Observations: | 23 | AIC: | 205.8 |
Df Residuals: | 19 | BIC: | 210.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 291.7921 | 150.317 | 1.941 | 0.067 | -22.825 606.409 |
C(dose)[T.1] | -24.0575 | 203.030 | -0.118 | 0.907 | -449.004 400.889 |
expression | -26.6798 | 16.868 | -1.582 | 0.130 | -61.985 8.625 |
expression:C(dose)[T.1] | 7.6658 | 23.376 | 0.328 | 0.747 | -41.262 56.593 |
Omnibus: | 0.015 | Durbin-Watson: | 2.030 |
Prob(Omnibus): | 0.993 | Jarque-Bera (JB): | 0.177 |
Skew: | -0.050 | Prob(JB): | 0.915 |
Kurtosis: | 2.582 | Cond. No. | 571. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.707 |
Model: | OLS | Adj. R-squared: | 0.678 |
Method: | Least Squares | F-statistic: | 24.12 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 4.67e-06 |
Time: | 05:15:29 | Log-Likelihood: | -98.990 |
No. Observations: | 23 | AIC: | 204.0 |
Df Residuals: | 20 | BIC: | 207.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 256.2482 | 101.799 | 2.517 | 0.020 | 43.899 468.597 |
C(dose)[T.1] | 42.4421 | 9.709 | 4.371 | 0.000 | 22.189 62.695 |
expression | -22.6883 | 11.415 | -1.988 | 0.061 | -46.499 1.122 |
Omnibus: | 0.009 | Durbin-Watson: | 2.006 |
Prob(Omnibus): | 0.995 | Jarque-Bera (JB): | 0.112 |
Skew: | 0.005 | Prob(JB): | 0.946 |
Kurtosis: | 2.659 | Cond. No. | 224. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:15:29 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.427 |
Model: | OLS | Adj. R-squared: | 0.400 |
Method: | Least Squares | F-statistic: | 15.65 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000722 |
Time: | 05:15:29 | Log-Likelihood: | -106.70 |
No. Observations: | 23 | AIC: | 217.4 |
Df Residuals: | 21 | BIC: | 219.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 520.9277 | 111.676 | 4.665 | 0.000 | 288.685 753.170 |
expression | -50.8579 | 12.857 | -3.956 | 0.001 | -77.596 -24.120 |
Omnibus: | 2.517 | Durbin-Watson: | 2.679 |
Prob(Omnibus): | 0.284 | Jarque-Bera (JB): | 1.425 |
Skew: | 0.602 | Prob(JB): | 0.490 |
Kurtosis: | 3.188 | Cond. No. | 180. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.136 | 0.307 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.578 |
Model: | OLS | Adj. R-squared: | 0.463 |
Method: | Least Squares | F-statistic: | 5.024 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0196 |
Time: | 05:15:29 | Log-Likelihood: | -68.827 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 11 | BIC: | 148.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 55.0410 | 140.682 | 0.391 | 0.703 | -254.598 364.680 |
C(dose)[T.1] | -323.2654 | 252.801 | -1.279 | 0.227 | -879.677 233.146 |
expression | 1.4899 | 16.873 | 0.088 | 0.931 | -35.647 38.627 |
expression:C(dose)[T.1] | 43.3377 | 29.698 | 1.459 | 0.172 | -22.026 108.702 |
Omnibus: | 0.229 | Durbin-Watson: | 1.316 |
Prob(Omnibus): | 0.892 | Jarque-Bera (JB): | 0.364 |
Skew: | -0.228 | Prob(JB): | 0.834 |
Kurtosis: | 2.388 | Cond. No. | 374. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.496 |
Model: | OLS | Adj. R-squared: | 0.413 |
Method: | Least Squares | F-statistic: | 5.915 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0163 |
Time: | 05:15:29 | Log-Likelihood: | -70.155 |
No. Observations: | 15 | AIC: | 146.3 |
Df Residuals: | 12 | BIC: | 148.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -61.2730 | 121.257 | -0.505 | 0.622 | -325.470 202.924 |
C(dose)[T.1] | 45.0083 | 15.549 | 2.895 | 0.013 | 11.131 78.886 |
expression | 15.4791 | 14.524 | 1.066 | 0.307 | -16.166 47.124 |
Omnibus: | 1.025 | Durbin-Watson: | 0.931 |
Prob(Omnibus): | 0.599 | Jarque-Bera (JB): | 0.904 |
Skew: | -0.432 | Prob(JB): | 0.636 |
Kurtosis: | 2.162 | Cond. No. | 139. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:15:29 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.145 |
Model: | OLS | Adj. R-squared: | 0.079 |
Method: | Least Squares | F-statistic: | 2.201 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.162 |
Time: | 05:15:29 | Log-Likelihood: | -74.127 |
No. Observations: | 15 | AIC: | 152.3 |
Df Residuals: | 13 | BIC: | 153.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -127.1484 | 149.123 | -0.853 | 0.409 | -449.309 195.012 |
expression | 26.1047 | 17.594 | 1.484 | 0.162 | -11.905 64.115 |
Omnibus: | 0.696 | Durbin-Watson: | 1.487 |
Prob(Omnibus): | 0.706 | Jarque-Bera (JB): | 0.615 |
Skew: | -0.052 | Prob(JB): | 0.735 |
Kurtosis: | 2.014 | Cond. No. | 136. |