AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.035 0.321 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.745
Model: OLS Adj. R-squared: 0.704
Method: Least Squares F-statistic: 18.47
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.40e-06
Time: 04:49:12 Log-Likelihood: -97.407
No. Observations: 23 AIC: 202.8
Df Residuals: 19 BIC: 207.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 15.1514 58.841 0.257 0.800 -108.004 138.307
C(dose)[T.1] 303.1759 100.786 3.008 0.007 92.228 514.123
expression 7.6573 11.489 0.666 0.513 -16.390 31.704
expression:C(dose)[T.1] -43.4738 18.012 -2.414 0.026 -81.174 -5.774
Omnibus: 1.291 Durbin-Watson: 1.685
Prob(Omnibus): 0.524 Jarque-Bera (JB): 0.882
Skew: 0.071 Prob(JB): 0.644
Kurtosis: 2.051 Cond. No. 187.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.666
Model: OLS Adj. R-squared: 0.633
Method: Least Squares F-statistic: 19.97
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.71e-05
Time: 04:49:12 Log-Likelihood: -100.48
No. Observations: 23 AIC: 207.0
Df Residuals: 20 BIC: 210.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 105.3690 50.629 2.081 0.050 -0.242 210.980
C(dose)[T.1] 61.2056 11.530 5.309 0.000 37.155 85.256
expression -10.0304 9.858 -1.017 0.321 -30.594 10.534
Omnibus: 0.829 Durbin-Watson: 2.111
Prob(Omnibus): 0.661 Jarque-Bera (JB): 0.780
Skew: 0.389 Prob(JB): 0.677
Kurtosis: 2.544 Cond. No. 68.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:49:12 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.196
Model: OLS Adj. R-squared: 0.158
Method: Least Squares F-statistic: 5.125
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0343
Time: 04:49:12 Log-Likelihood: -110.59
No. Observations: 23 AIC: 225.2
Df Residuals: 21 BIC: 227.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -57.5708 60.988 -0.944 0.356 -184.403 69.262
expression 25.0720 11.075 2.264 0.034 2.040 48.104
Omnibus: 1.136 Durbin-Watson: 2.146
Prob(Omnibus): 0.567 Jarque-Bera (JB): 0.930
Skew: 0.460 Prob(JB): 0.628
Kurtosis: 2.646 Cond. No. 53.6

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.509 0.243 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.512
Model: OLS Adj. R-squared: 0.379
Method: Least Squares F-statistic: 3.843
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0419
Time: 04:49:12 Log-Likelihood: -69.923
No. Observations: 15 AIC: 147.8
Df Residuals: 11 BIC: 150.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 162.3460 121.187 1.340 0.207 -104.385 429.077
C(dose)[T.1] 26.9431 146.286 0.184 0.857 -295.031 348.917
expression -17.3251 22.024 -0.787 0.448 -65.799 31.149
expression:C(dose)[T.1] 4.6698 26.178 0.178 0.862 -52.948 62.287
Omnibus: 3.383 Durbin-Watson: 0.787
Prob(Omnibus): 0.184 Jarque-Bera (JB): 1.960
Skew: -0.885 Prob(JB): 0.375
Kurtosis: 2.993 Cond. No. 162.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.510
Model: OLS Adj. R-squared: 0.429
Method: Least Squares F-statistic: 6.253
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0138
Time: 04:49:13 Log-Likelihood: -69.945
No. Observations: 15 AIC: 145.9
Df Residuals: 12 BIC: 148.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 144.2380 63.469 2.273 0.042 5.952 282.524
C(dose)[T.1] 52.8860 15.136 3.494 0.004 19.908 85.864
expression -14.0199 11.415 -1.228 0.243 -38.890 10.851
Omnibus: 3.579 Durbin-Watson: 0.768
Prob(Omnibus): 0.167 Jarque-Bera (JB): 2.064
Skew: -0.908 Prob(JB): 0.356
Kurtosis: 3.030 Cond. No. 50.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:49:13 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.012
Model: OLS Adj. R-squared: -0.064
Method: Least Squares F-statistic: 0.1599
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.696
Time: 04:49:13 Log-Likelihood: -75.208
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 127.9662 86.377 1.481 0.162 -58.640 314.573
expression -6.1042 15.267 -0.400 0.696 -39.087 26.878
Omnibus: 0.651 Durbin-Watson: 1.667
Prob(Omnibus): 0.722 Jarque-Bera (JB): 0.599
Skew: 0.054 Prob(JB): 0.741
Kurtosis: 2.027 Cond. No. 49.9