AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.426 | 0.521 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.663 |
Model: | OLS | Adj. R-squared: | 0.610 |
Method: | Least Squares | F-statistic: | 12.48 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.73e-05 |
Time: | 04:03:59 | Log-Likelihood: | -100.59 |
No. Observations: | 23 | AIC: | 209.2 |
Df Residuals: | 19 | BIC: | 213.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 52.5758 | 50.036 | 1.051 | 0.307 | -52.150 157.302 |
C(dose)[T.1] | 98.8706 | 70.351 | 1.405 | 0.176 | -48.375 246.116 |
expression | 0.3071 | 9.343 | 0.033 | 0.974 | -19.247 19.862 |
expression:C(dose)[T.1] | -7.8547 | 12.585 | -0.624 | 0.540 | -34.195 18.485 |
Omnibus: | 0.759 | Durbin-Watson: | 1.873 |
Prob(Omnibus): | 0.684 | Jarque-Bera (JB): | 0.797 |
Skew: | 0.320 | Prob(JB): | 0.671 |
Kurtosis: | 2.350 | Cond. No. | 123. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.656 |
Model: | OLS | Adj. R-squared: | 0.622 |
Method: | Least Squares | F-statistic: | 19.10 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.30e-05 |
Time: | 04:03:59 | Log-Likelihood: | -100.82 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 20 | BIC: | 211.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 75.5874 | 33.307 | 2.269 | 0.034 | 6.111 145.064 |
C(dose)[T.1] | 55.3514 | 9.211 | 6.010 | 0.000 | 36.139 74.564 |
expression | -4.0218 | 6.163 | -0.653 | 0.521 | -16.878 8.834 |
Omnibus: | 0.471 | Durbin-Watson: | 1.981 |
Prob(Omnibus): | 0.790 | Jarque-Bera (JB): | 0.571 |
Skew: | 0.272 | Prob(JB): | 0.752 |
Kurtosis: | 2.453 | Cond. No. | 44.7 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:03:59 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.036 |
Model: | OLS | Adj. R-squared: | -0.010 |
Method: | Least Squares | F-statistic: | 0.7813 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.387 |
Time: | 04:03:59 | Log-Likelihood: | -112.68 |
No. Observations: | 23 | AIC: | 229.4 |
Df Residuals: | 21 | BIC: | 231.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 33.1077 | 53.205 | 0.622 | 0.540 | -77.538 143.753 |
expression | 8.3902 | 9.492 | 0.884 | 0.387 | -11.350 28.130 |
Omnibus: | 3.621 | Durbin-Watson: | 2.346 |
Prob(Omnibus): | 0.164 | Jarque-Bera (JB): | 1.633 |
Skew: | 0.291 | Prob(JB): | 0.442 |
Kurtosis: | 1.831 | Cond. No. | 43.4 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.144 | 0.064 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.614 |
Model: | OLS | Adj. R-squared: | 0.508 |
Method: | Least Squares | F-statistic: | 5.828 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0124 |
Time: | 04:03:59 | Log-Likelihood: | -68.165 |
No. Observations: | 15 | AIC: | 144.3 |
Df Residuals: | 11 | BIC: | 147.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 13.4660 | 72.274 | 0.186 | 0.856 | -145.607 172.539 |
C(dose)[T.1] | -23.8144 | 95.988 | -0.248 | 0.809 | -235.083 187.454 |
expression | 12.6714 | 16.806 | 0.754 | 0.467 | -24.319 49.662 |
expression:C(dose)[T.1] | 18.6678 | 22.807 | 0.819 | 0.430 | -31.530 68.865 |
Omnibus: | 0.435 | Durbin-Watson: | 1.331 |
Prob(Omnibus): | 0.805 | Jarque-Bera (JB): | 0.480 |
Skew: | 0.323 | Prob(JB): | 0.787 |
Kurtosis: | 2.409 | Cond. No. | 83.8 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.590 |
Model: | OLS | Adj. R-squared: | 0.522 |
Method: | Least Squares | F-statistic: | 8.644 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00473 |
Time: | 04:03:59 | Log-Likelihood: | -68.608 |
No. Observations: | 15 | AIC: | 143.2 |
Df Residuals: | 12 | BIC: | 145.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -29.7033 | 48.731 | -0.610 | 0.554 | -135.879 76.472 |
C(dose)[T.1] | 53.9183 | 13.767 | 3.917 | 0.002 | 23.923 83.913 |
expression | 22.8083 | 11.204 | 2.036 | 0.064 | -1.603 47.219 |
Omnibus: | 0.505 | Durbin-Watson: | 1.142 |
Prob(Omnibus): | 0.777 | Jarque-Bera (JB): | 0.582 |
Skew: | 0.267 | Prob(JB): | 0.747 |
Kurtosis: | 2.195 | Cond. No. | 32.1 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:03:59 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.067 |
Model: | OLS | Adj. R-squared: | -0.005 |
Method: | Least Squares | F-statistic: | 0.9265 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.353 |
Time: | 04:03:59 | Log-Likelihood: | -74.784 |
No. Observations: | 15 | AIC: | 153.6 |
Df Residuals: | 13 | BIC: | 155.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 29.7214 | 67.156 | 0.443 | 0.665 | -115.361 174.804 |
expression | 15.4152 | 16.015 | 0.963 | 0.353 | -19.184 50.014 |
Omnibus: | 1.090 | Durbin-Watson: | 1.551 |
Prob(Omnibus): | 0.580 | Jarque-Bera (JB): | 0.793 |
Skew: | 0.215 | Prob(JB): | 0.673 |
Kurtosis: | 1.959 | Cond. No. | 30.3 |