AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.526 0.477 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.663
Model: OLS Adj. R-squared: 0.609
Method: Least Squares F-statistic: 12.44
Date: Thu, 21 Nov 2024 Prob (F-statistic): 9.91e-05
Time: 04:40:56 Log-Likelihood: -100.61
No. Observations: 23 AIC: 209.2
Df Residuals: 19 BIC: 213.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 100.2557 103.468 0.969 0.345 -116.304 316.816
C(dose)[T.1] 178.6998 250.617 0.713 0.484 -345.847 703.247
expression -6.4951 14.569 -0.446 0.661 -36.988 23.998
expression:C(dose)[T.1] -18.2289 35.992 -0.506 0.618 -93.561 57.103
Omnibus: 0.181 Durbin-Watson: 1.863
Prob(Omnibus): 0.914 Jarque-Bera (JB): 0.391
Skew: -0.042 Prob(JB): 0.822
Kurtosis: 2.367 Cond. No. 467.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.624
Method: Least Squares F-statistic: 19.24
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.19e-05
Time: 04:40:56 Log-Likelihood: -100.76
No. Observations: 23 AIC: 207.5
Df Residuals: 20 BIC: 210.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 121.4310 92.868 1.308 0.206 -72.289 315.151
C(dose)[T.1] 51.8523 8.895 5.829 0.000 33.297 70.408
expression -9.4820 13.072 -0.725 0.477 -36.750 17.786
Omnibus: 0.360 Durbin-Watson: 1.809
Prob(Omnibus): 0.835 Jarque-Bera (JB): 0.507
Skew: 0.059 Prob(JB): 0.776
Kurtosis: 2.282 Cond. No. 154.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:40:56 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.077
Model: OLS Adj. R-squared: 0.033
Method: Least Squares F-statistic: 1.755
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.200
Time: 04:40:56 Log-Likelihood: -112.18
No. Observations: 23 AIC: 228.4
Df Residuals: 21 BIC: 230.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 269.2332 143.233 1.880 0.074 -28.636 567.103
expression -27.0172 20.395 -1.325 0.200 -69.432 15.397
Omnibus: 4.608 Durbin-Watson: 2.435
Prob(Omnibus): 0.100 Jarque-Bera (JB): 1.631
Skew: 0.165 Prob(JB): 0.442
Kurtosis: 1.738 Cond. No. 148.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.175 0.300 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.516
Model: OLS Adj. R-squared: 0.384
Method: Least Squares F-statistic: 3.911
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0400
Time: 04:40:56 Log-Likelihood: -69.856
No. Observations: 15 AIC: 147.7
Df Residuals: 11 BIC: 150.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 298.3615 189.215 1.577 0.143 -118.099 714.822
C(dose)[T.1] -136.8159 302.421 -0.452 0.660 -802.439 528.807
expression -31.2264 25.540 -1.223 0.247 -87.440 24.987
expression:C(dose)[T.1] 25.4589 39.598 0.643 0.533 -61.695 112.612
Omnibus: 1.988 Durbin-Watson: 1.132
Prob(Omnibus): 0.370 Jarque-Bera (JB): 1.433
Skew: -0.718 Prob(JB): 0.488
Kurtosis: 2.521 Cond. No. 391.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.498
Model: OLS Adj. R-squared: 0.414
Method: Least Squares F-statistic: 5.951
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0160
Time: 04:40:56 Log-Likelihood: -70.132
No. Observations: 15 AIC: 146.3
Df Residuals: 12 BIC: 148.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 220.0341 141.195 1.558 0.145 -87.603 527.671
C(dose)[T.1] 57.3076 16.781 3.415 0.005 20.744 93.871
expression -20.6351 19.034 -1.084 0.300 -62.108 20.837
Omnibus: 2.062 Durbin-Watson: 1.006
Prob(Omnibus): 0.357 Jarque-Bera (JB): 1.573
Skew: -0.659 Prob(JB): 0.456
Kurtosis: 2.119 Cond. No. 147.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:40:56 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.010
Model: OLS Adj. R-squared: -0.066
Method: Least Squares F-statistic: 0.1318
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.722
Time: 04:40:56 Log-Likelihood: -75.224
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 30.1985 175.104 0.172 0.866 -348.091 408.488
expression 8.3455 22.986 0.363 0.722 -41.313 58.004
Omnibus: 0.110 Durbin-Watson: 1.572
Prob(Omnibus): 0.946 Jarque-Bera (JB): 0.313
Skew: -0.127 Prob(JB): 0.855
Kurtosis: 2.339 Cond. No. 134.