AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.266 | 0.612 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.688 |
Model: | OLS | Adj. R-squared: | 0.638 |
Method: | Least Squares | F-statistic: | 13.94 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 4.86e-05 |
Time: | 03:50:22 | Log-Likelihood: | -99.727 |
No. Observations: | 23 | AIC: | 207.5 |
Df Residuals: | 19 | BIC: | 212.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 93.4551 | 39.449 | 2.369 | 0.029 | 10.887 176.024 |
C(dose)[T.1] | -109.0143 | 114.072 | -0.956 | 0.351 | -347.771 129.742 |
expression | -8.3473 | 8.297 | -1.006 | 0.327 | -25.713 9.018 |
expression:C(dose)[T.1] | 33.3912 | 23.268 | 1.435 | 0.168 | -15.310 82.092 |
Omnibus: | 0.833 | Durbin-Watson: | 1.462 |
Prob(Omnibus): | 0.659 | Jarque-Bera (JB): | 0.457 |
Skew: | -0.342 | Prob(JB): | 0.796 |
Kurtosis: | 2.899 | Cond. No. | 156. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.654 |
Model: | OLS | Adj. R-squared: | 0.619 |
Method: | Least Squares | F-statistic: | 18.87 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.48e-05 |
Time: | 03:50:22 | Log-Likelihood: | -100.91 |
No. Observations: | 23 | AIC: | 207.8 |
Df Residuals: | 20 | BIC: | 211.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 73.4932 | 37.881 | 1.940 | 0.067 | -5.524 152.511 |
C(dose)[T.1] | 54.2143 | 8.877 | 6.108 | 0.000 | 35.698 72.731 |
expression | -4.1017 | 7.954 | -0.516 | 0.612 | -20.694 12.491 |
Omnibus: | 0.247 | Durbin-Watson: | 1.776 |
Prob(Omnibus): | 0.884 | Jarque-Bera (JB): | 0.438 |
Skew: | 0.007 | Prob(JB): | 0.803 |
Kurtosis: | 2.324 | Cond. No. | 44.1 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:50:22 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.008 |
Model: | OLS | Adj. R-squared: | -0.040 |
Method: | Least Squares | F-statistic: | 0.1631 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.690 |
Time: | 03:50:22 | Log-Likelihood: | -113.02 |
No. Observations: | 23 | AIC: | 230.0 |
Df Residuals: | 21 | BIC: | 232.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.6961 | 62.367 | 0.877 | 0.390 | -75.003 184.395 |
expression | 5.2084 | 12.896 | 0.404 | 0.690 | -21.610 32.027 |
Omnibus: | 3.589 | Durbin-Watson: | 2.587 |
Prob(Omnibus): | 0.166 | Jarque-Bera (JB): | 1.514 |
Skew: | 0.211 | Prob(JB): | 0.469 |
Kurtosis: | 1.816 | Cond. No. | 43.7 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.012 | 0.915 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.496 |
Model: | OLS | Adj. R-squared: | 0.358 |
Method: | Least Squares | F-statistic: | 3.603 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0495 |
Time: | 03:50:22 | Log-Likelihood: | -70.167 |
No. Observations: | 15 | AIC: | 148.3 |
Df Residuals: | 11 | BIC: | 151.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 32.6006 | 74.283 | 0.439 | 0.669 | -130.895 196.096 |
C(dose)[T.1] | 182.3255 | 133.296 | 1.368 | 0.199 | -111.058 475.709 |
expression | 7.8116 | 16.461 | 0.475 | 0.644 | -28.418 44.041 |
expression:C(dose)[T.1] | -29.4377 | 29.296 | -1.005 | 0.337 | -93.918 35.042 |
Omnibus: | 1.146 | Durbin-Watson: | 0.857 |
Prob(Omnibus): | 0.564 | Jarque-Bera (JB): | 0.916 |
Skew: | -0.368 | Prob(JB): | 0.633 |
Kurtosis: | 2.040 | Cond. No. | 99.6 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.358 |
Method: | Least Squares | F-statistic: | 4.896 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0279 |
Time: | 03:50:22 | Log-Likelihood: | -70.826 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 74.0358 | 61.811 | 1.198 | 0.254 | -60.640 208.711 |
C(dose)[T.1] | 49.3253 | 15.776 | 3.127 | 0.009 | 14.951 83.699 |
expression | -1.4819 | 13.622 | -0.109 | 0.915 | -31.162 28.198 |
Omnibus: | 2.659 | Durbin-Watson: | 0.785 |
Prob(Omnibus): | 0.265 | Jarque-Bera (JB): | 1.875 |
Skew: | -0.838 | Prob(JB): | 0.392 |
Kurtosis: | 2.566 | Cond. No. | 37.7 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:50:22 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.001 |
Model: | OLS | Adj. R-squared: | -0.076 |
Method: | Least Squares | F-statistic: | 0.009536 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.924 |
Time: | 03:50:22 | Log-Likelihood: | -75.295 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 85.9328 | 79.846 | 1.076 | 0.301 | -86.564 258.430 |
expression | 1.7168 | 17.580 | 0.098 | 0.924 | -36.263 39.697 |
Omnibus: | 0.798 | Durbin-Watson: | 1.627 |
Prob(Omnibus): | 0.671 | Jarque-Bera (JB): | 0.650 |
Skew: | 0.061 | Prob(JB): | 0.722 |
Kurtosis: | 1.987 | Cond. No. | 37.4 |