AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.037 0.849 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.691
Model: OLS Adj. R-squared: 0.642
Method: Least Squares F-statistic: 14.16
Date: Thu, 21 Nov 2024 Prob (F-statistic): 4.38e-05
Time: 04:13:22 Log-Likelihood: -99.600
No. Observations: 23 AIC: 207.2
Df Residuals: 19 BIC: 211.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -30.8979 114.116 -0.271 0.789 -269.746 207.950
C(dose)[T.1] 390.3224 210.916 1.851 0.080 -51.131 831.775
expression 11.3229 15.163 0.747 0.464 -20.413 43.059
expression:C(dose)[T.1] -42.2234 26.512 -1.593 0.128 -97.713 13.267
Omnibus: 1.149 Durbin-Watson: 1.621
Prob(Omnibus): 0.563 Jarque-Bera (JB): 1.044
Skew: 0.457 Prob(JB): 0.593
Kurtosis: 2.496 Cond. No. 483.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 18.55
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.78e-05
Time: 04:13:22 Log-Likelihood: -101.04
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 72.9091 97.202 0.750 0.462 -129.850 275.668
C(dose)[T.1] 54.9170 11.997 4.577 0.000 29.891 79.943
expression -2.4880 12.907 -0.193 0.849 -29.412 24.435
Omnibus: 0.665 Durbin-Watson: 1.901
Prob(Omnibus): 0.717 Jarque-Bera (JB): 0.660
Skew: 0.085 Prob(JB): 0.719
Kurtosis: 2.188 Cond. No. 178.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:13:22 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.283
Model: OLS Adj. R-squared: 0.249
Method: Least Squares F-statistic: 8.278
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00902
Time: 04:13:22 Log-Likelihood: -109.28
No. Observations: 23 AIC: 222.6
Df Residuals: 21 BIC: 224.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -216.4369 103.116 -2.099 0.048 -430.877 -1.996
expression 37.8715 13.163 2.877 0.009 10.498 65.245
Omnibus: 2.680 Durbin-Watson: 1.743
Prob(Omnibus): 0.262 Jarque-Bera (JB): 1.534
Skew: 0.349 Prob(JB): 0.464
Kurtosis: 1.945 Cond. No. 134.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.585 0.232 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.516
Model: OLS Adj. R-squared: 0.384
Method: Least Squares F-statistic: 3.909
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0400
Time: 04:13:22 Log-Likelihood: -69.857
No. Observations: 15 AIC: 147.7
Df Residuals: 11 BIC: 150.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 176.5614 93.410 1.890 0.085 -29.032 382.154
C(dose)[T.1] 0.8342 186.165 0.004 0.997 -408.913 410.581
expression -17.6603 15.006 -1.177 0.264 -50.688 15.367
expression:C(dose)[T.1] 7.7811 30.126 0.258 0.801 -58.526 74.088
Omnibus: 2.233 Durbin-Watson: 1.006
Prob(Omnibus): 0.327 Jarque-Bera (JB): 1.512
Skew: -0.755 Prob(JB): 0.470
Kurtosis: 2.632 Cond. No. 185.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.513
Model: OLS Adj. R-squared: 0.432
Method: Least Squares F-statistic: 6.322
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0133
Time: 04:13:22 Log-Likelihood: -69.903
No. Observations: 15 AIC: 145.8
Df Residuals: 12 BIC: 147.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 164.6316 77.970 2.111 0.056 -5.249 334.513
C(dose)[T.1] 48.7527 14.797 3.295 0.006 16.512 80.993
expression -15.7298 12.496 -1.259 0.232 -42.955 11.496
Omnibus: 2.264 Durbin-Watson: 0.953
Prob(Omnibus): 0.322 Jarque-Bera (JB): 1.564
Skew: -0.765 Prob(JB): 0.458
Kurtosis: 2.598 Cond. No. 67.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:13:22 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.073
Model: OLS Adj. R-squared: 0.001
Method: Least Squares F-statistic: 1.018
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.331
Time: 04:13:22 Log-Likelihood: -74.735
No. Observations: 15 AIC: 153.5
Df Residuals: 13 BIC: 154.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 196.6792 102.574 1.917 0.077 -24.918 418.277
expression -16.7106 16.564 -1.009 0.331 -52.494 19.073
Omnibus: 3.683 Durbin-Watson: 1.805
Prob(Omnibus): 0.159 Jarque-Bera (JB): 1.376
Skew: 0.283 Prob(JB): 0.503
Kurtosis: 1.628 Cond. No. 66.6