AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.047 0.318 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.667
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 12.66
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.88e-05
Time: 06:20:06 Log-Likelihood: -100.47
No. Observations: 23 AIC: 208.9
Df Residuals: 19 BIC: 213.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 138.6113 103.247 1.343 0.195 -77.488 354.710
C(dose)[T.1] 62.7976 194.208 0.323 0.750 -343.685 469.280
expression -10.9131 13.327 -0.819 0.423 -38.806 16.980
expression:C(dose)[T.1] -0.9850 24.733 -0.040 0.969 -52.751 50.781
Omnibus: 0.690 Durbin-Watson: 1.857
Prob(Omnibus): 0.708 Jarque-Bera (JB): 0.718
Skew: 0.211 Prob(JB): 0.698
Kurtosis: 2.244 Cond. No. 420.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.667
Model: OLS Adj. R-squared: 0.633
Method: Least Squares F-statistic: 19.99
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.70e-05
Time: 06:20:06 Log-Likelihood: -100.48
No. Observations: 23 AIC: 207.0
Df Residuals: 20 BIC: 210.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 140.8231 84.838 1.660 0.113 -36.146 317.793
C(dose)[T.1] 55.0713 8.715 6.319 0.000 36.892 73.251
expression -11.1991 10.943 -1.023 0.318 -34.025 11.627
Omnibus: 0.630 Durbin-Watson: 1.854
Prob(Omnibus): 0.730 Jarque-Bera (JB): 0.686
Skew: 0.206 Prob(JB): 0.710
Kurtosis: 2.261 Cond. No. 158.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 06:20:06 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.01533
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.903
Time: 06:20:06 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 62.1883 141.769 0.439 0.665 -232.637 357.013
expression 2.2450 18.133 0.124 0.903 -35.465 39.955
Omnibus: 3.209 Durbin-Watson: 2.498
Prob(Omnibus): 0.201 Jarque-Bera (JB): 1.526
Skew: 0.273 Prob(JB): 0.466
Kurtosis: 1.863 Cond. No. 156.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.216 0.292 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.535
Model: OLS Adj. R-squared: 0.408
Method: Least Squares F-statistic: 4.218
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0326
Time: 06:20:06 Log-Likelihood: -69.558
No. Observations: 15 AIC: 147.1
Df Residuals: 11 BIC: 149.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 28.2335 146.041 0.193 0.850 -293.200 349.667
C(dose)[T.1] 201.7418 167.245 1.206 0.253 -166.363 569.846
expression 5.7220 21.259 0.269 0.793 -41.069 52.513
expression:C(dose)[T.1] -22.2662 24.315 -0.916 0.379 -75.783 31.250
Omnibus: 1.953 Durbin-Watson: 0.752
Prob(Omnibus): 0.377 Jarque-Bera (JB): 1.409
Skew: -0.565 Prob(JB): 0.494
Kurtosis: 2.011 Cond. No. 233.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.499
Model: OLS Adj. R-squared: 0.416
Method: Least Squares F-statistic: 5.988
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0157
Time: 06:20:06 Log-Likelihood: -70.109
No. Observations: 15 AIC: 146.2
Df Residuals: 12 BIC: 148.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 144.8300 71.047 2.039 0.064 -9.968 299.628
C(dose)[T.1] 49.2131 14.998 3.281 0.007 16.535 81.891
expression -11.2997 10.248 -1.103 0.292 -33.628 11.029
Omnibus: 2.434 Durbin-Watson: 0.995
Prob(Omnibus): 0.296 Jarque-Bera (JB): 1.629
Skew: -0.609 Prob(JB): 0.443
Kurtosis: 1.940 Cond. No. 67.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 06:20:06 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.050
Model: OLS Adj. R-squared: -0.023
Method: Least Squares F-statistic: 0.6901
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.421
Time: 06:20:06 Log-Likelihood: -74.912
No. Observations: 15 AIC: 153.8
Df Residuals: 13 BIC: 155.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 170.8450 93.434 1.829 0.091 -31.006 372.696
expression -11.2658 13.562 -0.831 0.421 -40.564 18.033
Omnibus: 0.302 Durbin-Watson: 1.833
Prob(Omnibus): 0.860 Jarque-Bera (JB): 0.452
Skew: -0.018 Prob(JB): 0.798
Kurtosis: 2.151 Cond. No. 66.4