AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.723 0.405 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.662
Model: OLS Adj. R-squared: 0.608
Method: Least Squares F-statistic: 12.38
Date: Sun, 02 Feb 2025 Prob (F-statistic): 0.000102
Time: 21:46:41 Log-Likelihood: -100.65
No. Observations: 23 AIC: 209.3
Df Residuals: 19 BIC: 213.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 35.5485 30.865 1.152 0.264 -29.053 100.150
C(dose)[T.1] 47.6931 53.380 0.893 0.383 -64.033 159.419
expression 4.6585 7.553 0.617 0.545 -11.150 20.467
expression:C(dose)[T.1] 1.3787 13.099 0.105 0.917 -26.037 28.794
Omnibus: 0.089 Durbin-Watson: 2.081
Prob(Omnibus): 0.957 Jarque-Bera (JB): 0.315
Skew: -0.005 Prob(JB): 0.854
Kurtosis: 2.427 Cond. No. 63.1

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.661
Model: OLS Adj. R-squared: 0.627
Method: Least Squares F-statistic: 19.53
Date: Sun, 02 Feb 2025 Prob (F-statistic): 1.99e-05
Time: 21:46:41 Log-Likelihood: -100.65
No. Observations: 23 AIC: 207.3
Df Residuals: 20 BIC: 210.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 33.7122 24.825 1.358 0.190 -18.071 85.495
C(dose)[T.1] 53.2341 8.616 6.178 0.000 35.261 71.207
expression 5.1169 6.016 0.850 0.405 -7.433 17.667
Omnibus: 0.178 Durbin-Watson: 2.082
Prob(Omnibus): 0.915 Jarque-Bera (JB): 0.390
Skew: -0.015 Prob(JB): 0.823
Kurtosis: 2.363 Cond. No. 25.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Sun, 02 Feb 2025 Prob (F-statistic): 3.51e-06
Time: 21:46:41 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.015
Model: OLS Adj. R-squared: -0.032
Method: Least Squares F-statistic: 0.3172
Date: Sun, 02 Feb 2025 Prob (F-statistic): 0.579
Time: 21:46:41 Log-Likelihood: -112.93
No. Observations: 23 AIC: 229.9
Df Residuals: 21 BIC: 232.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 57.0740 40.835 1.398 0.177 -27.846 141.995
expression 5.6394 10.012 0.563 0.579 -15.182 26.461
Omnibus: 2.841 Durbin-Watson: 2.693
Prob(Omnibus): 0.242 Jarque-Bera (JB): 1.458
Skew: 0.279 Prob(JB): 0.482
Kurtosis: 1.901 Cond. No. 24.6

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.821 0.383 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.755
Model: OLS Adj. R-squared: 0.689
Method: Least Squares F-statistic: 11.32
Date: Sun, 02 Feb 2025 Prob (F-statistic): 0.00109
Time: 21:46:41 Log-Likelihood: -64.740
No. Observations: 15 AIC: 137.5
Df Residuals: 11 BIC: 140.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 154.8381 38.839 3.987 0.002 69.354 240.323
C(dose)[T.1] -336.5788 109.735 -3.067 0.011 -578.104 -95.054
expression -19.7466 8.586 -2.300 0.042 -38.644 -0.849
expression:C(dose)[T.1] 94.8178 27.148 3.493 0.005 35.066 154.570
Omnibus: 0.113 Durbin-Watson: 1.651
Prob(Omnibus): 0.945 Jarque-Bera (JB): 0.177
Skew: 0.151 Prob(JB): 0.915
Kurtosis: 2.563 Cond. No. 103.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.484
Model: OLS Adj. R-squared: 0.398
Method: Least Squares F-statistic: 5.630
Date: Sun, 02 Feb 2025 Prob (F-statistic): 0.0189
Time: 21:46:41 Log-Likelihood: -70.337
No. Observations: 15 AIC: 146.7
Df Residuals: 12 BIC: 148.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 112.8549 51.351 2.198 0.048 0.971 224.739
C(dose)[T.1] 44.5565 16.065 2.773 0.017 9.553 79.560
expression -10.2622 11.325 -0.906 0.383 -34.938 14.413
Omnibus: 3.480 Durbin-Watson: 1.091
Prob(Omnibus): 0.176 Jarque-Bera (JB): 1.735
Skew: -0.823 Prob(JB): 0.420
Kurtosis: 3.259 Cond. No. 30.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Sun, 02 Feb 2025 Prob (F-statistic): 0.00629
Time: 21:46:41 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.153
Model: OLS Adj. R-squared: 0.088
Method: Least Squares F-statistic: 2.355
Date: Sun, 02 Feb 2025 Prob (F-statistic): 0.149
Time: 21:46:41 Log-Likelihood: -74.051
No. Observations: 15 AIC: 152.1
Df Residuals: 13 BIC: 153.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 178.5216 56.082 3.183 0.007 57.364 299.679
expression -20.2739 13.212 -1.535 0.149 -48.816 8.268
Omnibus: 2.344 Durbin-Watson: 1.686
Prob(Omnibus): 0.310 Jarque-Bera (JB): 1.374
Skew: 0.467 Prob(JB): 0.503
Kurtosis: 1.848 Cond. No. 26.8