AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
5.830 | 0.025 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.729 |
Model: | OLS | Adj. R-squared: | 0.686 |
Method: | Least Squares | F-statistic: | 17.00 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.31e-05 |
Time: | 04:05:04 | Log-Likelihood: | -98.109 |
No. Observations: | 23 | AIC: | 204.2 |
Df Residuals: | 19 | BIC: | 208.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 1461.8779 | 1121.024 | 1.304 | 0.208 | -884.453 3808.209 |
C(dose)[T.1] | 255.8493 | 1380.938 | 0.185 | 0.855 | -2634.488 3146.187 |
expression | -120.9472 | 96.317 | -1.256 | 0.224 | -322.542 80.648 |
expression:C(dose)[T.1] | -16.5831 | 118.410 | -0.140 | 0.890 | -264.418 231.252 |
Omnibus: | 2.569 | Durbin-Watson: | 2.112 |
Prob(Omnibus): | 0.277 | Jarque-Bera (JB): | 1.219 |
Skew: | -0.100 | Prob(JB): | 0.544 |
Kurtosis: | 1.890 | Cond. No. | 5.73e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.728 |
Model: | OLS | Adj. R-squared: | 0.701 |
Method: | Least Squares | F-statistic: | 26.80 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.19e-06 |
Time: | 04:05:04 | Log-Likelihood: | -98.121 |
No. Observations: | 23 | AIC: | 202.2 |
Df Residuals: | 20 | BIC: | 205.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 1589.5811 | 635.902 | 2.500 | 0.021 | 263.113 2916.049 |
C(dose)[T.1] | 62.4560 | 8.591 | 7.270 | 0.000 | 44.534 80.378 |
expression | -131.9195 | 54.635 | -2.415 | 0.025 | -245.886 -17.953 |
Omnibus: | 2.878 | Durbin-Watson: | 2.158 |
Prob(Omnibus): | 0.237 | Jarque-Bera (JB): | 1.283 |
Skew: | -0.100 | Prob(JB): | 0.527 |
Kurtosis: | 1.860 | Cond. No. | 1.94e+03 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:05:04 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.010 |
Model: | OLS | Adj. R-squared: | -0.037 |
Method: | Least Squares | F-statistic: | 0.2179 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.645 |
Time: | 04:05:04 | Log-Likelihood: | -112.99 |
No. Observations: | 23 | AIC: | 230.0 |
Df Residuals: | 21 | BIC: | 232.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -418.2840 | 1066.805 | -0.392 | 0.699 | -2636.826 1800.258 |
expression | 42.6672 | 91.398 | 0.467 | 0.645 | -147.406 232.740 |
Omnibus: | 2.970 | Durbin-Watson: | 2.421 |
Prob(Omnibus): | 0.227 | Jarque-Bera (JB): | 1.590 |
Skew: | 0.342 | Prob(JB): | 0.452 |
Kurtosis: | 1.909 | Cond. No. | 1.75e+03 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.520 | 0.485 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.476 |
Model: | OLS | Adj. R-squared: | 0.333 |
Method: | Least Squares | F-statistic: | 3.330 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0601 |
Time: | 04:05:04 | Log-Likelihood: | -70.454 |
No. Observations: | 15 | AIC: | 148.9 |
Df Residuals: | 11 | BIC: | 151.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -255.9766 | 1434.988 | -0.178 | 0.862 | -3414.363 2902.410 |
C(dose)[T.1] | -516.9550 | 1892.346 | -0.273 | 0.790 | -4681.981 3648.071 |
expression | 28.3647 | 125.854 | 0.225 | 0.826 | -248.637 305.367 |
expression:C(dose)[T.1] | 50.0240 | 166.299 | 0.301 | 0.769 | -315.998 416.046 |
Omnibus: | 2.535 | Durbin-Watson: | 0.714 |
Prob(Omnibus): | 0.282 | Jarque-Bera (JB): | 1.667 |
Skew: | -0.615 | Prob(JB): | 0.434 |
Kurtosis: | 1.924 | Cond. No. | 3.72e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.472 |
Model: | OLS | Adj. R-squared: | 0.384 |
Method: | Least Squares | F-statistic: | 5.356 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0218 |
Time: | 04:05:04 | Log-Likelihood: | -70.515 |
No. Observations: | 15 | AIC: | 147.0 |
Df Residuals: | 12 | BIC: | 149.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -582.6383 | 901.783 | -0.646 | 0.530 | -2547.455 1382.178 |
C(dose)[T.1] | 52.2548 | 15.983 | 3.269 | 0.007 | 17.431 87.078 |
expression | 57.0151 | 79.086 | 0.721 | 0.485 | -115.299 229.329 |
Omnibus: | 2.404 | Durbin-Watson: | 0.669 |
Prob(Omnibus): | 0.301 | Jarque-Bera (JB): | 1.554 |
Skew: | -0.570 | Prob(JB): | 0.460 |
Kurtosis: | 1.911 | Cond. No. | 1.35e+03 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:05:04 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.001 |
Model: | OLS | Adj. R-squared: | -0.076 |
Method: | Least Squares | F-statistic: | 0.01330 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.910 |
Time: | 04:05:04 | Log-Likelihood: | -75.292 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 225.7878 | 1145.693 | 0.197 | 0.847 | -2249.331 2700.906 |
expression | -11.6170 | 100.734 | -0.115 | 0.910 | -229.239 206.005 |
Omnibus: | 0.421 | Durbin-Watson: | 1.634 |
Prob(Omnibus): | 0.810 | Jarque-Bera (JB): | 0.507 |
Skew: | 0.016 | Prob(JB): | 0.776 |
Kurtosis: | 2.100 | Cond. No. | 1.29e+03 |