AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.536 0.473 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.724
Model: OLS Adj. R-squared: 0.680
Method: Least Squares F-statistic: 16.61
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.53e-05
Time: 04:54:19 Log-Likelihood: -98.303
No. Observations: 23 AIC: 204.6
Df Residuals: 19 BIC: 209.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 187.8354 115.264 1.630 0.120 -53.415 429.085
C(dose)[T.1] -258.0997 147.056 -1.755 0.095 -565.892 49.693
expression -17.4098 15.000 -1.161 0.260 -48.805 13.986
expression:C(dose)[T.1] 40.9206 19.241 2.127 0.047 0.648 81.193
Omnibus: 0.153 Durbin-Watson: 1.568
Prob(Omnibus): 0.926 Jarque-Bera (JB): 0.358
Skew: -0.109 Prob(JB): 0.836
Kurtosis: 2.429 Cond. No. 390.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.624
Method: Least Squares F-statistic: 19.26
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.18e-05
Time: 04:54:19 Log-Likelihood: -100.76
No. Observations: 23 AIC: 207.5
Df Residuals: 20 BIC: 210.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -3.0445 78.429 -0.039 0.969 -166.645 160.556
C(dose)[T.1] 54.1760 8.730 6.206 0.000 35.965 72.387
expression 7.4593 10.189 0.732 0.473 -13.794 28.712
Omnibus: 0.618 Durbin-Watson: 1.901
Prob(Omnibus): 0.734 Jarque-Bera (JB): 0.674
Skew: 0.192 Prob(JB): 0.714
Kurtosis: 2.254 Cond. No. 141.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:54:19 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.002474
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.961
Time: 04:54:19 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 86.1084 128.698 0.669 0.511 -181.534 353.751
expression -0.8385 16.859 -0.050 0.961 -35.900 34.223
Omnibus: 3.239 Durbin-Watson: 2.478
Prob(Omnibus): 0.198 Jarque-Bera (JB): 1.574
Skew: 0.300 Prob(JB): 0.455
Kurtosis: 1.868 Cond. No. 138.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.018 0.894 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.646
Model: OLS Adj. R-squared: 0.549
Method: Least Squares F-statistic: 6.689
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00782
Time: 04:54:19 Log-Likelihood: -67.513
No. Observations: 15 AIC: 143.0
Df Residuals: 11 BIC: 145.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -182.5865 141.495 -1.290 0.223 -494.016 128.843
C(dose)[T.1] 500.7922 183.567 2.728 0.020 96.763 904.821
expression 31.8287 17.972 1.771 0.104 -7.727 71.384
expression:C(dose)[T.1] -58.4177 23.654 -2.470 0.031 -110.480 -6.356
Omnibus: 3.105 Durbin-Watson: 1.303
Prob(Omnibus): 0.212 Jarque-Bera (JB): 1.296
Skew: -0.686 Prob(JB): 0.523
Kurtosis: 3.438 Cond. No. 302.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.450
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 4.902
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0278
Time: 04:54:19 Log-Likelihood: -70.821
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 82.3007 110.165 0.747 0.469 -157.729 322.331
C(dose)[T.1] 48.6783 16.184 3.008 0.011 13.416 83.940
expression -1.8933 13.948 -0.136 0.894 -32.284 28.498
Omnibus: 2.968 Durbin-Watson: 0.827
Prob(Omnibus): 0.227 Jarque-Bera (JB): 2.016
Skew: -0.882 Prob(JB): 0.365
Kurtosis: 2.661 Cond. No. 111.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:54:19 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.035
Model: OLS Adj. R-squared: -0.040
Method: Least Squares F-statistic: 0.4671
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.506
Time: 04:54:19 Log-Likelihood: -75.035
No. Observations: 15 AIC: 154.1
Df Residuals: 13 BIC: 155.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 184.5387 133.335 1.384 0.190 -103.513 472.591
expression -11.7877 17.247 -0.683 0.506 -49.048 25.473
Omnibus: 0.995 Durbin-Watson: 1.781
Prob(Omnibus): 0.608 Jarque-Bera (JB): 0.446
Skew: -0.417 Prob(JB): 0.800
Kurtosis: 2.870 Cond. No. 105.