AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.730 0.403 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.667
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 12.71
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.67e-05
Time: 04:47:13 Log-Likelihood: -100.44
No. Observations: 23 AIC: 208.9
Df Residuals: 19 BIC: 213.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 51.9143 53.815 0.965 0.347 -60.723 164.551
C(dose)[T.1] 11.3843 69.313 0.164 0.871 -133.689 156.457
expression 0.5598 13.049 0.043 0.966 -26.752 27.871
expression:C(dose)[T.1] 9.6186 16.405 0.586 0.565 -24.718 43.955
Omnibus: 1.137 Durbin-Watson: 1.950
Prob(Omnibus): 0.566 Jarque-Bera (JB): 1.050
Skew: 0.374 Prob(JB): 0.592
Kurtosis: 2.267 Cond. No. 97.9

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.661
Model: OLS Adj. R-squared: 0.628
Method: Least Squares F-statistic: 19.53
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.98e-05
Time: 04:47:13 Log-Likelihood: -100.65
No. Observations: 23 AIC: 207.3
Df Residuals: 20 BIC: 210.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 26.9760 32.424 0.832 0.415 -40.660 94.612
C(dose)[T.1] 51.6814 8.829 5.853 0.000 33.264 70.099
expression 6.6453 7.778 0.854 0.403 -9.579 22.869
Omnibus: 1.420 Durbin-Watson: 1.998
Prob(Omnibus): 0.492 Jarque-Bera (JB): 0.943
Skew: 0.124 Prob(JB): 0.624
Kurtosis: 2.040 Cond. No. 34.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:47:13 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.081
Model: OLS Adj. R-squared: 0.038
Method: Least Squares F-statistic: 1.860
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.187
Time: 04:47:13 Log-Likelihood: -112.13
No. Observations: 23 AIC: 228.3
Df Residuals: 21 BIC: 230.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 9.5565 51.901 0.184 0.856 -98.377 117.490
expression 16.6371 12.197 1.364 0.187 -8.729 42.003
Omnibus: 0.389 Durbin-Watson: 2.589
Prob(Omnibus): 0.823 Jarque-Bera (JB): 0.489
Skew: 0.256 Prob(JB): 0.783
Kurtosis: 2.503 Cond. No. 33.7

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.905 0.360 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.495
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 3.596
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0497
Time: 04:47:13 Log-Likelihood: -70.175
No. Observations: 15 AIC: 148.3
Df Residuals: 11 BIC: 151.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -33.0921 107.504 -0.308 0.764 -269.706 203.522
C(dose)[T.1] 112.0967 151.651 0.739 0.475 -221.686 445.879
expression 20.2668 21.551 0.940 0.367 -27.166 67.699
expression:C(dose)[T.1] -12.5426 30.690 -0.409 0.691 -80.091 55.006
Omnibus: 2.325 Durbin-Watson: 0.864
Prob(Omnibus): 0.313 Jarque-Bera (JB): 1.364
Skew: -0.735 Prob(JB): 0.506
Kurtosis: 2.842 Cond. No. 132.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.487
Model: OLS Adj. R-squared: 0.402
Method: Least Squares F-statistic: 5.706
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0181
Time: 04:47:13 Log-Likelihood: -70.288
No. Observations: 15 AIC: 146.6
Df Residuals: 12 BIC: 148.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -2.4174 74.245 -0.033 0.975 -164.184 159.349
C(dose)[T.1] 50.4561 15.235 3.312 0.006 17.261 83.651
expression 14.0822 14.801 0.951 0.360 -18.167 46.332
Omnibus: 2.874 Durbin-Watson: 0.814
Prob(Omnibus): 0.238 Jarque-Bera (JB): 1.545
Skew: -0.786 Prob(JB): 0.462
Kurtosis: 3.032 Cond. No. 50.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:47:13 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.019
Model: OLS Adj. R-squared: -0.057
Method: Least Squares F-statistic: 0.2512
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.625
Time: 04:47:13 Log-Likelihood: -75.157
No. Observations: 15 AIC: 154.3
Df Residuals: 13 BIC: 155.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 45.4175 96.801 0.469 0.647 -163.708 254.543
expression 9.8224 19.600 0.501 0.625 -32.520 52.165
Omnibus: 1.314 Durbin-Watson: 1.618
Prob(Omnibus): 0.519 Jarque-Bera (JB): 0.822
Skew: 0.147 Prob(JB): 0.663
Kurtosis: 1.891 Cond. No. 49.4