AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.335 0.262 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.680
Model: OLS Adj. R-squared: 0.630
Method: Least Squares F-statistic: 13.46
Date: Thu, 21 Nov 2024 Prob (F-statistic): 6.04e-05
Time: 04:39:09 Log-Likelihood: -99.998
No. Observations: 23 AIC: 208.0
Df Residuals: 19 BIC: 212.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 20.6429 44.438 0.465 0.648 -72.366 113.652
C(dose)[T.1] -24.7247 108.991 -0.227 0.823 -252.845 203.396
expression 5.4328 7.128 0.762 0.455 -9.486 20.352
expression:C(dose)[T.1] 13.3504 18.170 0.735 0.471 -24.680 51.380
Omnibus: 1.574 Durbin-Watson: 1.802
Prob(Omnibus): 0.455 Jarque-Bera (JB): 0.986
Skew: -0.506 Prob(JB): 0.611
Kurtosis: 2.918 Cond. No. 181.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.671
Model: OLS Adj. R-squared: 0.638
Method: Least Squares F-statistic: 20.40
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.49e-05
Time: 04:39:09 Log-Likelihood: -100.32
No. Observations: 23 AIC: 206.6
Df Residuals: 20 BIC: 210.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 7.9491 40.468 0.196 0.846 -76.466 92.364
C(dose)[T.1] 55.0993 8.627 6.387 0.000 37.104 73.095
expression 7.4874 6.481 1.155 0.262 -6.031 21.006
Omnibus: 0.577 Durbin-Watson: 1.788
Prob(Omnibus): 0.749 Jarque-Bera (JB): 0.661
Skew: -0.291 Prob(JB): 0.719
Kurtosis: 2.409 Cond. No. 60.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:39:09 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.048
Method: Least Squares F-statistic: 0.0002431
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.988
Time: 04:39:09 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 78.6911 66.225 1.188 0.248 -59.031 216.413
expression 0.1692 10.853 0.016 0.988 -22.400 22.739
Omnibus: 3.330 Durbin-Watson: 2.491
Prob(Omnibus): 0.189 Jarque-Bera (JB): 1.573
Skew: 0.288 Prob(JB): 0.455
Kurtosis: 1.856 Cond. No. 57.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.040 0.845 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.452
Model: OLS Adj. R-squared: 0.302
Method: Least Squares F-statistic: 3.019
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0758
Time: 04:39:09 Log-Likelihood: -70.795
No. Observations: 15 AIC: 149.6
Df Residuals: 11 BIC: 152.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 92.6159 108.492 0.854 0.411 -146.173 331.404
C(dose)[T.1] 17.0044 234.862 0.072 0.944 -499.923 533.932
expression -3.8466 16.468 -0.234 0.820 -40.092 32.398
expression:C(dose)[T.1] 4.9191 35.852 0.137 0.893 -73.991 83.829
Omnibus: 2.775 Durbin-Watson: 0.887
Prob(Omnibus): 0.250 Jarque-Bera (JB): 1.862
Skew: -0.847 Prob(JB): 0.394
Kurtosis: 2.673 Cond. No. 230.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.451
Model: OLS Adj. R-squared: 0.359
Method: Least Squares F-statistic: 4.921
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0275
Time: 04:39:09 Log-Likelihood: -70.808
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 85.8204 92.496 0.928 0.372 -115.712 287.353
C(dose)[T.1] 49.1499 15.715 3.128 0.009 14.910 83.390
expression -2.8088 14.017 -0.200 0.845 -33.349 27.731
Omnibus: 2.830 Durbin-Watson: 0.862
Prob(Omnibus): 0.243 Jarque-Bera (JB): 1.933
Skew: -0.861 Prob(JB): 0.380
Kurtosis: 2.642 Cond. No. 79.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:39:10 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.003
Model: OLS Adj. R-squared: -0.074
Method: Least Squares F-statistic: 0.03629
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.852
Time: 04:39:10 Log-Likelihood: -75.279
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 116.2658 119.064 0.976 0.347 -140.956 373.488
expression -3.4560 18.142 -0.190 0.852 -42.649 35.737
Omnibus: 0.611 Durbin-Watson: 1.691
Prob(Omnibus): 0.737 Jarque-Bera (JB): 0.584
Skew: 0.046 Prob(JB): 0.747
Kurtosis: 2.038 Cond. No. 78.8