AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.323 | 0.143 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.686 |
Model: | OLS | Adj. R-squared: | 0.636 |
Method: | Least Squares | F-statistic: | 13.81 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 5.14e-05 |
Time: | 04:34:33 | Log-Likelihood: | -99.796 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 19 | BIC: | 212.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -7.5522 | 54.269 | -0.139 | 0.891 | -121.138 106.033 |
C(dose)[T.1] | 53.5928 | 84.735 | 0.632 | 0.535 | -123.760 230.946 |
expression | 11.0534 | 9.655 | 1.145 | 0.267 | -9.155 31.262 |
expression:C(dose)[T.1] | -0.9758 | 14.349 | -0.068 | 0.946 | -31.009 29.057 |
Omnibus: | 0.185 | Durbin-Watson: | 1.923 |
Prob(Omnibus): | 0.912 | Jarque-Bera (JB): | 0.259 |
Skew: | 0.181 | Prob(JB): | 0.878 |
Kurtosis: | 2.627 | Cond. No. | 153. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.686 |
Model: | OLS | Adj. R-squared: | 0.654 |
Method: | Least Squares | F-statistic: | 21.80 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.44e-06 |
Time: | 04:34:33 | Log-Likelihood: | -99.799 |
No. Observations: | 23 | AIC: | 205.6 |
Df Residuals: | 20 | BIC: | 209.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -5.0836 | 39.324 | -0.129 | 0.898 | -87.113 76.945 |
C(dose)[T.1] | 47.8648 | 9.044 | 5.292 | 0.000 | 28.999 66.731 |
expression | 10.6115 | 6.963 | 1.524 | 0.143 | -3.912 25.135 |
Omnibus: | 0.242 | Durbin-Watson: | 1.926 |
Prob(Omnibus): | 0.886 | Jarque-Bera (JB): | 0.264 |
Skew: | 0.203 | Prob(JB): | 0.876 |
Kurtosis: | 2.668 | Cond. No. | 57.7 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:34:33 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.245 |
Model: | OLS | Adj. R-squared: | 0.209 |
Method: | Least Squares | F-statistic: | 6.824 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0163 |
Time: | 04:34:33 | Log-Likelihood: | -109.87 |
No. Observations: | 23 | AIC: | 223.7 |
Df Residuals: | 21 | BIC: | 226.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -67.5344 | 56.718 | -1.191 | 0.247 | -185.485 50.416 |
expression | 25.2397 | 9.662 | 2.612 | 0.016 | 5.146 45.333 |
Omnibus: | 2.365 | Durbin-Watson: | 2.509 |
Prob(Omnibus): | 0.307 | Jarque-Bera (JB): | 1.178 |
Skew: | 0.531 | Prob(JB): | 0.555 |
Kurtosis: | 3.318 | Cond. No. | 54.6 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.718 | 0.214 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.612 |
Model: | OLS | Adj. R-squared: | 0.506 |
Method: | Least Squares | F-statistic: | 5.778 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0127 |
Time: | 04:34:33 | Log-Likelihood: | -68.204 |
No. Observations: | 15 | AIC: | 144.4 |
Df Residuals: | 11 | BIC: | 147.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 29.5809 | 127.396 | 0.232 | 0.821 | -250.815 309.977 |
C(dose)[T.1] | -356.0681 | 244.281 | -1.458 | 0.173 | -893.727 181.591 |
expression | 6.8615 | 23.024 | 0.298 | 0.771 | -43.813 57.536 |
expression:C(dose)[T.1] | 69.6585 | 42.696 | 1.631 | 0.131 | -24.315 163.632 |
Omnibus: | 1.829 | Durbin-Watson: | 1.111 |
Prob(Omnibus): | 0.401 | Jarque-Bera (JB): | 0.924 |
Skew: | -0.607 | Prob(JB): | 0.630 |
Kurtosis: | 2.936 | Cond. No. | 254. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.518 |
Model: | OLS | Adj. R-squared: | 0.437 |
Method: | Least Squares | F-statistic: | 6.443 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0126 |
Time: | 04:34:33 | Log-Likelihood: | -69.829 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 12 | BIC: | 147.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -82.1465 | 114.621 | -0.717 | 0.487 | -331.884 167.591 |
C(dose)[T.1] | 41.7432 | 15.781 | 2.645 | 0.021 | 7.359 76.127 |
expression | 27.1168 | 20.688 | 1.311 | 0.214 | -17.959 72.193 |
Omnibus: | 3.174 | Durbin-Watson: | 0.825 |
Prob(Omnibus): | 0.205 | Jarque-Bera (JB): | 2.099 |
Skew: | -0.906 | Prob(JB): | 0.350 |
Kurtosis: | 2.730 | Cond. No. | 91.9 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:34:33 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.237 |
Model: | OLS | Adj. R-squared: | 0.178 |
Method: | Least Squares | F-statistic: | 4.030 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0659 |
Time: | 04:34:33 | Log-Likelihood: | -73.275 |
No. Observations: | 15 | AIC: | 150.5 |
Df Residuals: | 13 | BIC: | 152.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -171.5374 | 132.399 | -1.296 | 0.218 | -457.568 114.493 |
expression | 46.8349 | 23.329 | 2.008 | 0.066 | -3.564 97.234 |
Omnibus: | 0.522 | Durbin-Watson: | 1.836 |
Prob(Omnibus): | 0.770 | Jarque-Bera (JB): | 0.463 |
Skew: | -0.357 | Prob(JB): | 0.793 |
Kurtosis: | 2.520 | Cond. No. | 87.3 |