AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.546 0.468 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.670
Model: OLS Adj. R-squared: 0.618
Method: Least Squares F-statistic: 12.88
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.97e-05
Time: 04:54:29 Log-Likelihood: -100.34
No. Observations: 23 AIC: 208.7
Df Residuals: 19 BIC: 213.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 11.0019 39.469 0.279 0.783 -71.609 93.612
C(dose)[T.1] 99.7362 57.661 1.730 0.100 -20.950 220.422
expression 11.4243 10.314 1.108 0.282 -10.163 33.011
expression:C(dose)[T.1] -12.2252 14.664 -0.834 0.415 -42.918 18.468
Omnibus: 0.108 Durbin-Watson: 2.298
Prob(Omnibus): 0.947 Jarque-Bera (JB): 0.332
Skew: -0.022 Prob(JB): 0.847
Kurtosis: 2.413 Cond. No. 71.5

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.624
Method: Least Squares F-statistic: 19.27
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.16e-05
Time: 04:54:29 Log-Likelihood: -100.75
No. Observations: 23 AIC: 207.5
Df Residuals: 20 BIC: 210.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 33.8724 28.159 1.203 0.243 -24.867 92.612
C(dose)[T.1] 52.2357 8.780 5.949 0.000 33.921 70.550
expression 5.3771 7.276 0.739 0.468 -9.800 20.554
Omnibus: 0.980 Durbin-Watson: 2.110
Prob(Omnibus): 0.613 Jarque-Bera (JB): 0.803
Skew: 0.135 Prob(JB): 0.669
Kurtosis: 2.125 Cond. No. 27.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:54:29 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.054
Model: OLS Adj. R-squared: 0.009
Method: Least Squares F-statistic: 1.194
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.287
Time: 04:54:29 Log-Likelihood: -112.47
No. Observations: 23 AIC: 228.9
Df Residuals: 21 BIC: 231.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 30.3461 45.725 0.664 0.514 -64.745 125.437
expression 12.7248 11.645 1.093 0.287 -11.493 36.943
Omnibus: 2.490 Durbin-Watson: 2.589
Prob(Omnibus): 0.288 Jarque-Bera (JB): 1.659
Skew: 0.439 Prob(JB): 0.436
Kurtosis: 2.021 Cond. No. 27.2

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.146 0.709 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.457
Model: OLS Adj. R-squared: 0.308
Method: Least Squares F-statistic: 3.080
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0723
Time: 04:54:29 Log-Likelihood: -70.726
No. Observations: 15 AIC: 149.5
Df Residuals: 11 BIC: 152.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 38.9443 76.056 0.512 0.619 -128.453 206.342
C(dose)[T.1] 66.9592 119.267 0.561 0.586 -195.546 329.465
expression 9.0777 23.939 0.379 0.712 -43.611 61.766
expression:C(dose)[T.1] -5.7395 37.138 -0.155 0.880 -87.479 76.000
Omnibus: 2.298 Durbin-Watson: 0.892
Prob(Omnibus): 0.317 Jarque-Bera (JB): 1.626
Skew: -0.775 Prob(JB): 0.443
Kurtosis: 2.552 Cond. No. 65.9

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.455
Model: OLS Adj. R-squared: 0.365
Method: Least Squares F-statistic: 5.017
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0261
Time: 04:54:29 Log-Likelihood: -70.743
No. Observations: 15 AIC: 147.5
Df Residuals: 12 BIC: 149.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 46.4273 56.216 0.826 0.425 -76.057 168.911
C(dose)[T.1] 48.7015 15.699 3.102 0.009 14.497 82.906
expression 6.6929 17.542 0.382 0.709 -31.527 44.913
Omnibus: 2.220 Durbin-Watson: 0.870
Prob(Omnibus): 0.329 Jarque-Bera (JB): 1.613
Skew: -0.763 Prob(JB): 0.446
Kurtosis: 2.498 Cond. No. 25.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:54:29 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.019
Model: OLS Adj. R-squared: -0.057
Method: Least Squares F-statistic: 0.2463
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.628
Time: 04:54:29 Log-Likelihood: -75.159
No. Observations: 15 AIC: 154.3
Df Residuals: 13 BIC: 155.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 58.1152 72.340 0.803 0.436 -98.166 214.397
expression 11.1893 22.547 0.496 0.628 -37.519 59.898
Omnibus: 0.907 Durbin-Watson: 1.768
Prob(Omnibus): 0.635 Jarque-Bera (JB): 0.702
Skew: 0.133 Prob(JB): 0.704
Kurtosis: 1.975 Cond. No. 25.3