AIM Score vs. Gene Expression 
		Full X range:
		
 
		 
			
		
		Auto X range:
		
 
		
		Group Comparisons: Boxplots
		 
		 
		
		
		 CP73 
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic | p-value | df difference | 
		 | 0.546 | 0.468 | 1.0 | 
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.670 | 
  | Model: | OLS | Adj. R-squared: | 0.618 | 
  | Method: | Least Squares | F-statistic: | 12.88 | 
  | Date: | Thu, 30 Oct 2025 | Prob (F-statistic): | 7.97e-05 | 
  | Time: | 23:57:03 | Log-Likelihood: | -100.34 | 
  | No. Observations: | 23 | AIC: | 208.7 | 
  | Df Residuals: | 19 | BIC: | 213.2 | 
  | Df Model: | 3 |  |  | 
             |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 11.0019 | 39.469 | 0.279 | 0.783 | -71.609    93.612 | 
  | C(dose)[T.1] | 99.7362 | 57.661 | 1.730 | 0.100 | -20.950   220.422 | 
  | expression | 11.4243 | 10.314 | 1.108 | 0.282 | -10.163    33.011 | 
  | expression:C(dose)[T.1] | -12.2252 | 14.664 | -0.834 | 0.415 | -42.918    18.468 | 
  | Omnibus: | 0.108 | Durbin-Watson: | 2.298 | 
  | Prob(Omnibus): | 0.947 | Jarque-Bera (JB): | 0.332 | 
  | Skew: | -0.022 | Prob(JB): | 0.847 | 
  | Kurtosis: | 2.413 | Cond. No. | 71.5 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.658 | 
  | Model: | OLS | Adj. R-squared: | 0.624 | 
  | Method: | Least Squares | F-statistic: | 19.27 | 
  | Date: | Thu, 30 Oct 2025 | Prob (F-statistic): | 2.16e-05 | 
  | Time: | 23:57:03 | Log-Likelihood: | -100.75 | 
  | No. Observations: | 23 | AIC: | 207.5 | 
  | Df Residuals: | 20 | BIC: | 210.9 | 
  | Df Model: | 2 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 33.8724 | 28.159 | 1.203 | 0.243 | -24.867    92.612 | 
  | C(dose)[T.1] | 52.2357 | 8.780 | 5.949 | 0.000 | 33.921    70.550 | 
  | expression | 5.3771 | 7.276 | 0.739 | 0.468 | -9.800    20.554 | 
  | Omnibus: | 0.980 | Durbin-Watson: | 2.110 | 
  | Prob(Omnibus): | 0.613 | Jarque-Bera (JB): | 0.803 | 
  | Skew: | 0.135 | Prob(JB): | 0.669 | 
  | Kurtosis: | 2.125 | Cond. No. | 27.4 | 
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.649 | 
  | Model: | OLS | Adj. R-squared: | 0.632 | 
  | Method: | Least Squares | F-statistic: | 38.84 | 
  | Date: | Thu, 30 Oct 2025 | Prob (F-statistic): | 3.51e-06 | 
  | Time: | 23:57:03 | Log-Likelihood: | -101.06 | 
  | No. Observations: | 23 | AIC: | 206.1 | 
  | Df Residuals: | 21 | BIC: | 208.4 | 
  | Df Model: | 1 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900    66.517 | 
  | C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539    71.135 | 
  | Omnibus: | 0.322 | Durbin-Watson: | 1.888 | 
  | Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 | 
  | Skew: | 0.060 | Prob(JB): | 0.785 | 
  | Kurtosis: | 2.299 | Cond. No. | 2.57 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.054 | 
  | Model: | OLS | Adj. R-squared: | 0.009 | 
  | Method: | Least Squares | F-statistic: | 1.194 | 
  | Date: | Thu, 30 Oct 2025 | Prob (F-statistic): | 0.287 | 
  | Time: | 23:57:03 | Log-Likelihood: | -112.47 | 
  | No. Observations: | 23 | AIC: | 228.9 | 
  | Df Residuals: | 21 | BIC: | 231.2 | 
  | Df Model: | 1 |  |  | 
       |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 30.3461 | 45.725 | 0.664 | 0.514 | -64.745   125.437 | 
  | expression | 12.7248 | 11.645 | 1.093 | 0.287 | -11.493    36.943 | 
  | Omnibus: | 2.490 | Durbin-Watson: | 2.589 | 
  | Prob(Omnibus): | 0.288 | Jarque-Bera (JB): | 1.659 | 
  | Skew: | 0.439 | Prob(JB): | 0.436 | 
  | Kurtosis: | 2.021 | Cond. No. | 27.2 | 
			 
		
			
		
		 
	
		
		 CP101 
		
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic | p-value | df difference | 
		 | 0.146 | 0.709 | 1.0 | 
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.457 | 
  | Model: | OLS | Adj. R-squared: | 0.308 | 
  | Method: | Least Squares | F-statistic: | 3.080 | 
  | Date: | Thu, 30 Oct 2025 | Prob (F-statistic): | 0.0723 | 
  | Time: | 23:57:03 | Log-Likelihood: | -70.726 | 
  | No. Observations: | 15 | AIC: | 149.5 | 
  | Df Residuals: | 11 | BIC: | 152.3 | 
  | Df Model: | 3 |  |  | 
             |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 38.9443 | 76.056 | 0.512 | 0.619 | -128.453   206.342 | 
  | C(dose)[T.1] | 66.9592 | 119.267 | 0.561 | 0.586 | -195.546   329.465 | 
  | expression | 9.0777 | 23.939 | 0.379 | 0.712 | -43.611    61.766 | 
  | expression:C(dose)[T.1] | -5.7395 | 37.138 | -0.155 | 0.880 | -87.479    76.000 | 
  | Omnibus: | 2.298 | Durbin-Watson: | 0.892 | 
  | Prob(Omnibus): | 0.317 | Jarque-Bera (JB): | 1.626 | 
  | Skew: | -0.775 | Prob(JB): | 0.443 | 
  | Kurtosis: | 2.552 | Cond. No. | 65.9 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.455 | 
  | Model: | OLS | Adj. R-squared: | 0.365 | 
  | Method: | Least Squares | F-statistic: | 5.017 | 
  | Date: | Thu, 30 Oct 2025 | Prob (F-statistic): | 0.0261 | 
  | Time: | 23:57:03 | Log-Likelihood: | -70.743 | 
  | No. Observations: | 15 | AIC: | 147.5 | 
  | Df Residuals: | 12 | BIC: | 149.6 | 
  | Df Model: | 2 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 46.4273 | 56.216 | 0.826 | 0.425 | -76.057   168.911 | 
  | C(dose)[T.1] | 48.7015 | 15.699 | 3.102 | 0.009 | 14.497    82.906 | 
  | expression | 6.6929 | 17.542 | 0.382 | 0.709 | -31.527    44.913 | 
  | Omnibus: | 2.220 | Durbin-Watson: | 0.870 | 
  | Prob(Omnibus): | 0.329 | Jarque-Bera (JB): | 1.613 | 
  | Skew: | -0.763 | Prob(JB): | 0.446 | 
  | Kurtosis: | 2.498 | Cond. No. | 25.6 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.449 | 
  | Model: | OLS | Adj. R-squared: | 0.406 | 
  | Method: | Least Squares | F-statistic: | 10.58 | 
  | Date: | Thu, 30 Oct 2025 | Prob (F-statistic): | 0.00629 | 
  | Time: | 23:57:03 | Log-Likelihood: | -70.833 | 
  | No. Observations: | 15 | AIC: | 145.7 | 
  | Df Residuals: | 13 | BIC: | 147.1 | 
  | Df Model: | 1 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570    91.287 | 
  | C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527    81.866 | 
  | Omnibus: | 2.713 | Durbin-Watson: | 0.810 | 
  | Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 | 
  | Skew: | -0.843 | Prob(JB): | 0.393 | 
  | Kurtosis: | 2.619 | Cond. No. | 2.70 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.019 | 
  | Model: | OLS | Adj. R-squared: | -0.057 | 
  | Method: | Least Squares | F-statistic: | 0.2463 | 
  | Date: | Thu, 30 Oct 2025 | Prob (F-statistic): | 0.628 | 
  | Time: | 23:57:03 | Log-Likelihood: | -75.159 | 
  | No. Observations: | 15 | AIC: | 154.3 | 
  | Df Residuals: | 13 | BIC: | 155.7 | 
  | Df Model: | 1 |  |  | 
       |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 58.1152 | 72.340 | 0.803 | 0.436 | -98.166   214.397 | 
  | expression | 11.1893 | 22.547 | 0.496 | 0.628 | -37.519    59.898 | 
  | Omnibus: | 0.907 | Durbin-Watson: | 1.768 | 
  | Prob(Omnibus): | 0.635 | Jarque-Bera (JB): | 0.702 | 
  | Skew: | 0.133 | Prob(JB): | 0.704 | 
  | Kurtosis: | 1.975 | Cond. No. | 25.3 |