AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.940 | 0.179 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.680 |
Model: | OLS | Adj. R-squared: | 0.630 |
Method: | Least Squares | F-statistic: | 13.46 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.04e-05 |
Time: | 04:32:55 | Log-Likelihood: | -99.998 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 19 | BIC: | 212.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 233.0695 | 342.308 | 0.681 | 0.504 | -483.389 949.528 |
C(dose)[T.1] | 72.9553 | 377.228 | 0.193 | 0.849 | -716.592 862.503 |
expression | -21.3492 | 40.852 | -0.523 | 0.607 | -106.854 64.156 |
expression:C(dose)[T.1] | -1.1176 | 44.614 | -0.025 | 0.980 | -94.495 92.260 |
Omnibus: | 1.622 | Durbin-Watson: | 1.505 |
Prob(Omnibus): | 0.444 | Jarque-Bera (JB): | 0.974 |
Skew: | 0.057 | Prob(JB): | 0.615 |
Kurtosis: | 1.998 | Cond. No. | 1.16e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.680 |
Model: | OLS | Adj. R-squared: | 0.648 |
Method: | Least Squares | F-statistic: | 21.26 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.12e-05 |
Time: | 04:32:55 | Log-Likelihood: | -99.998 |
No. Observations: | 23 | AIC: | 206.0 |
Df Residuals: | 20 | BIC: | 209.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 240.9203 | 134.189 | 1.795 | 0.088 | -38.993 520.833 |
C(dose)[T.1] | 63.5100 | 11.111 | 5.716 | 0.000 | 40.332 86.688 |
expression | -22.2863 | 16.002 | -1.393 | 0.179 | -55.666 11.094 |
Omnibus: | 1.666 | Durbin-Watson: | 1.504 |
Prob(Omnibus): | 0.435 | Jarque-Bera (JB): | 0.985 |
Skew: | 0.054 | Prob(JB): | 0.611 |
Kurtosis: | 1.992 | Cond. No. | 281. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:32:55 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.158 |
Model: | OLS | Adj. R-squared: | 0.117 |
Method: | Least Squares | F-statistic: | 3.926 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0608 |
Time: | 04:32:55 | Log-Likelihood: | -111.13 |
No. Observations: | 23 | AIC: | 226.3 |
Df Residuals: | 21 | BIC: | 228.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -245.5573 | 164.296 | -1.495 | 0.150 | -587.230 96.115 |
expression | 37.8394 | 19.097 | 1.981 | 0.061 | -1.875 77.554 |
Omnibus: | 3.422 | Durbin-Watson: | 2.494 |
Prob(Omnibus): | 0.181 | Jarque-Bera (JB): | 2.215 |
Skew: | 0.757 | Prob(JB): | 0.330 |
Kurtosis: | 3.148 | Cond. No. | 216. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.103 | 0.314 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.517 |
Model: | OLS | Adj. R-squared: | 0.385 |
Method: | Least Squares | F-statistic: | 3.924 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0396 |
Time: | 04:32:55 | Log-Likelihood: | -69.843 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 11 | BIC: | 150.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -34.9136 | 375.780 | -0.093 | 0.928 | -862.001 792.174 |
C(dose)[T.1] | -353.4769 | 560.300 | -0.631 | 0.541 | -1586.688 879.734 |
expression | 12.2871 | 45.096 | 0.272 | 0.790 | -86.968 111.542 |
expression:C(dose)[T.1] | 46.5872 | 66.178 | 0.704 | 0.496 | -99.070 192.245 |
Omnibus: | 2.395 | Durbin-Watson: | 0.614 |
Prob(Omnibus): | 0.302 | Jarque-Bera (JB): | 1.478 |
Skew: | -0.526 | Prob(JB): | 0.478 |
Kurtosis: | 1.878 | Cond. No. | 819. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.495 |
Model: | OLS | Adj. R-squared: | 0.411 |
Method: | Least Squares | F-statistic: | 5.885 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0166 |
Time: | 04:32:55 | Log-Likelihood: | -70.174 |
No. Observations: | 15 | AIC: | 146.3 |
Df Residuals: | 12 | BIC: | 148.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -215.0949 | 269.290 | -0.799 | 0.440 | -801.828 371.638 |
C(dose)[T.1] | 40.7633 | 17.070 | 2.388 | 0.034 | 3.570 77.956 |
expression | 33.9195 | 32.304 | 1.050 | 0.314 | -36.464 104.303 |
Omnibus: | 3.251 | Durbin-Watson: | 0.589 |
Prob(Omnibus): | 0.197 | Jarque-Bera (JB): | 1.737 |
Skew: | -0.563 | Prob(JB): | 0.420 |
Kurtosis: | 1.771 | Cond. No. | 308. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:32:56 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.255 |
Model: | OLS | Adj. R-squared: | 0.198 |
Method: | Least Squares | F-statistic: | 4.456 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0547 |
Time: | 04:32:56 | Log-Likelihood: | -73.090 |
No. Observations: | 15 | AIC: | 150.2 |
Df Residuals: | 13 | BIC: | 151.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -500.4681 | 281.605 | -1.777 | 0.099 | -1108.838 107.902 |
expression | 70.2135 | 33.263 | 2.111 | 0.055 | -1.647 142.074 |
Omnibus: | 1.516 | Durbin-Watson: | 1.382 |
Prob(Omnibus): | 0.469 | Jarque-Bera (JB): | 0.840 |
Skew: | -0.015 | Prob(JB): | 0.657 |
Kurtosis: | 1.841 | Cond. No. | 276. |