AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.390 0.539 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.677
Model: OLS Adj. R-squared: 0.625
Method: Least Squares F-statistic: 13.25
Date: Thu, 21 Nov 2024 Prob (F-statistic): 6.70e-05
Time: 03:38:21 Log-Likelihood: -100.13
No. Observations: 23 AIC: 208.3
Df Residuals: 19 BIC: 212.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 133.0759 63.775 2.087 0.051 -0.408 266.559
C(dose)[T.1] -40.6585 85.553 -0.475 0.640 -219.722 138.405
expression -11.9240 9.600 -1.242 0.229 -32.017 8.169
expression:C(dose)[T.1] 14.2109 12.868 1.104 0.283 -12.722 41.144
Omnibus: 0.569 Durbin-Watson: 2.008
Prob(Omnibus): 0.752 Jarque-Bera (JB): 0.610
Skew: -0.043 Prob(JB): 0.737
Kurtosis: 2.207 Cond. No. 179.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.621
Method: Least Squares F-statistic: 19.05
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.34e-05
Time: 03:38:21 Log-Likelihood: -100.84
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 80.7631 42.936 1.881 0.075 -8.800 170.326
C(dose)[T.1] 53.3404 8.686 6.141 0.000 35.223 71.458
expression -4.0148 6.428 -0.625 0.539 -17.423 9.393
Omnibus: 0.095 Durbin-Watson: 1.921
Prob(Omnibus): 0.953 Jarque-Bera (JB): 0.316
Skew: 0.053 Prob(JB): 0.854
Kurtosis: 2.435 Cond. No. 67.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:38:21 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.007
Model: OLS Adj. R-squared: -0.041
Method: Least Squares F-statistic: 0.1403
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.712
Time: 03:38:21 Log-Likelihood: -113.03
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 106.1165 70.850 1.498 0.149 -41.225 253.458
expression -3.9910 10.656 -0.375 0.712 -26.151 18.169
Omnibus: 3.015 Durbin-Watson: 2.535
Prob(Omnibus): 0.221 Jarque-Bera (JB): 1.604
Skew: 0.345 Prob(JB): 0.448
Kurtosis: 1.905 Cond. No. 67.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.326 0.579 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.495
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 3.600
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0496
Time: 03:38:21 Log-Likelihood: -70.170
No. Observations: 15 AIC: 148.3
Df Residuals: 11 BIC: 151.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 2.2917 116.342 0.020 0.985 -253.775 258.358
C(dose)[T.1] 155.6905 126.870 1.227 0.245 -123.548 434.929
expression 12.1176 21.538 0.563 0.585 -35.286 59.522
expression:C(dose)[T.1] -19.4298 23.244 -0.836 0.421 -70.590 31.731
Omnibus: 4.465 Durbin-Watson: 0.678
Prob(Omnibus): 0.107 Jarque-Bera (JB): 2.382
Skew: -0.961 Prob(JB): 0.304
Kurtosis: 3.340 Cond. No. 147.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.463
Model: OLS Adj. R-squared: 0.374
Method: Least Squares F-statistic: 5.180
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0239
Time: 03:38:21 Log-Likelihood: -70.632
No. Observations: 15 AIC: 147.3
Df Residuals: 12 BIC: 149.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 91.9593 44.465 2.068 0.061 -4.923 188.841
C(dose)[T.1] 50.4766 15.692 3.217 0.007 16.287 84.666
expression -4.5635 7.998 -0.571 0.579 -21.991 12.864
Omnibus: 4.033 Durbin-Watson: 0.874
Prob(Omnibus): 0.133 Jarque-Bera (JB): 2.380
Skew: -0.975 Prob(JB): 0.304
Kurtosis: 3.055 Cond. No. 33.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:38:21 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.076
Method: Least Squares F-statistic: 0.007262
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.933
Time: 03:38:21 Log-Likelihood: -75.296
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 98.5536 58.238 1.692 0.114 -27.262 224.369
expression -0.8845 10.379 -0.085 0.933 -23.307 21.538
Omnibus: 0.508 Durbin-Watson: 1.624
Prob(Omnibus): 0.776 Jarque-Bera (JB): 0.543
Skew: 0.023 Prob(JB): 0.762
Kurtosis: 2.069 Cond. No. 33.2