AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.257 | 0.086 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.698 |
Model: | OLS | Adj. R-squared: | 0.651 |
Method: | Least Squares | F-statistic: | 14.66 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-05 |
Time: | 04:59:50 | Log-Likelihood: | -99.325 |
No. Observations: | 23 | AIC: | 206.6 |
Df Residuals: | 19 | BIC: | 211.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -60.0458 | 89.105 | -0.674 | 0.509 | -246.545 126.454 |
C(dose)[T.1] | 53.6326 | 130.155 | 0.412 | 0.685 | -218.784 326.050 |
expression | 16.9008 | 13.153 | 1.285 | 0.214 | -10.629 44.430 |
expression:C(dose)[T.1] | 1.4455 | 20.133 | 0.072 | 0.944 | -40.693 43.584 |
Omnibus: | 0.423 | Durbin-Watson: | 1.681 |
Prob(Omnibus): | 0.809 | Jarque-Bera (JB): | 0.503 |
Skew: | -0.272 | Prob(JB): | 0.778 |
Kurtosis: | 2.521 | Cond. No. | 261. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.698 |
Model: | OLS | Adj. R-squared: | 0.668 |
Method: | Least Squares | F-statistic: | 23.13 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.27e-06 |
Time: | 04:59:50 | Log-Likelihood: | -99.328 |
No. Observations: | 23 | AIC: | 204.7 |
Df Residuals: | 20 | BIC: | 208.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -64.2165 | 65.864 | -0.975 | 0.341 | -201.607 73.174 |
C(dose)[T.1] | 62.9497 | 9.722 | 6.475 | 0.000 | 42.670 83.229 |
expression | 17.5177 | 9.707 | 1.805 | 0.086 | -2.731 37.767 |
Omnibus: | 0.414 | Durbin-Watson: | 1.688 |
Prob(Omnibus): | 0.813 | Jarque-Bera (JB): | 0.504 |
Skew: | -0.266 | Prob(JB): | 0.777 |
Kurtosis: | 2.508 | Cond. No. | 109. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:59:50 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.066 |
Model: | OLS | Adj. R-squared: | 0.021 |
Method: | Least Squares | F-statistic: | 1.472 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.238 |
Time: | 04:59:50 | Log-Likelihood: | -112.33 |
No. Observations: | 23 | AIC: | 228.7 |
Df Residuals: | 21 | BIC: | 230.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 189.6690 | 90.879 | 2.087 | 0.049 | 0.677 378.662 |
expression | -16.9212 | 13.945 | -1.213 | 0.238 | -45.921 12.078 |
Omnibus: | 3.820 | Durbin-Watson: | 2.567 |
Prob(Omnibus): | 0.148 | Jarque-Bera (JB): | 1.661 |
Skew: | 0.285 | Prob(JB): | 0.436 |
Kurtosis: | 1.813 | Cond. No. | 86.9 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.273 | 0.281 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.647 |
Model: | OLS | Adj. R-squared: | 0.551 |
Method: | Least Squares | F-statistic: | 6.729 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00766 |
Time: | 04:59:50 | Log-Likelihood: | -67.484 |
No. Observations: | 15 | AIC: | 143.0 |
Df Residuals: | 11 | BIC: | 145.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -38.3621 | 141.589 | -0.271 | 0.791 | -349.998 273.274 |
C(dose)[T.1] | 443.2938 | 186.792 | 2.373 | 0.037 | 32.167 854.421 |
expression | 16.4910 | 22.021 | 0.749 | 0.470 | -31.976 64.958 |
expression:C(dose)[T.1] | -62.5906 | 29.366 | -2.131 | 0.056 | -127.225 2.043 |
Omnibus: | 1.322 | Durbin-Watson: | 1.198 |
Prob(Omnibus): | 0.516 | Jarque-Bera (JB): | 0.897 |
Skew: | -0.568 | Prob(JB): | 0.639 |
Kurtosis: | 2.621 | Cond. No. | 253. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.502 |
Model: | OLS | Adj. R-squared: | 0.419 |
Method: | Least Squares | F-statistic: | 6.039 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0153 |
Time: | 04:59:50 | Log-Likelihood: | -70.077 |
No. Observations: | 15 | AIC: | 146.2 |
Df Residuals: | 12 | BIC: | 148.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 187.4140 | 106.924 | 1.753 | 0.105 | -45.553 420.381 |
C(dose)[T.1] | 46.1835 | 15.203 | 3.038 | 0.010 | 13.060 79.307 |
expression | -18.7037 | 16.580 | -1.128 | 0.281 | -54.829 17.422 |
Omnibus: | 2.031 | Durbin-Watson: | 0.493 |
Prob(Omnibus): | 0.362 | Jarque-Bera (JB): | 1.451 |
Skew: | -0.726 | Prob(JB): | 0.484 |
Kurtosis: | 2.536 | Cond. No. | 93.4 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:59:50 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.118 |
Model: | OLS | Adj. R-squared: | 0.051 |
Method: | Least Squares | F-statistic: | 1.745 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.209 |
Time: | 04:59:50 | Log-Likelihood: | -74.355 |
No. Observations: | 15 | AIC: | 152.7 |
Df Residuals: | 13 | BIC: | 154.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 268.0520 | 132.358 | 2.025 | 0.064 | -17.891 553.995 |
expression | -27.5527 | 20.858 | -1.321 | 0.209 | -72.614 17.508 |
Omnibus: | 0.606 | Durbin-Watson: | 1.555 |
Prob(Omnibus): | 0.739 | Jarque-Bera (JB): | 0.581 |
Skew: | -0.385 | Prob(JB): | 0.748 |
Kurtosis: | 2.420 | Cond. No. | 90.2 |