AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.023 0.881 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.596
Method: Least Squares F-statistic: 11.80
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.000136
Time: 22:56:42 Log-Likelihood: -101.01
No. Observations: 23 AIC: 210.0
Df Residuals: 19 BIC: 214.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 40.5732 49.827 0.814 0.426 -63.717 144.863
C(dose)[T.1] 75.9174 83.302 0.911 0.374 -98.437 250.271
expression 2.4419 8.854 0.276 0.786 -16.090 20.974
expression:C(dose)[T.1] -4.1373 15.394 -0.269 0.791 -36.358 28.083
Omnibus: 0.210 Durbin-Watson: 1.870
Prob(Omnibus): 0.900 Jarque-Bera (JB): 0.411
Skew: 0.086 Prob(JB): 0.814
Kurtosis: 2.368 Cond. No. 127.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.53
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.80e-05
Time: 22:56:42 Log-Likelihood: -101.05
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 48.2157 39.956 1.207 0.242 -35.132 131.563
C(dose)[T.1] 53.6673 9.031 5.943 0.000 34.829 72.505
expression 1.0732 7.073 0.152 0.881 -13.681 15.827
Omnibus: 0.356 Durbin-Watson: 1.890
Prob(Omnibus): 0.837 Jarque-Bera (JB): 0.506
Skew: 0.070 Prob(JB): 0.777
Kurtosis: 2.287 Cond. No. 51.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:56:42 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.030
Model: OLS Adj. R-squared: -0.016
Method: Least Squares F-statistic: 0.6604
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.426
Time: 22:56:42 Log-Likelihood: -112.75
No. Observations: 23 AIC: 229.5
Df Residuals: 21 BIC: 231.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 128.9393 60.986 2.114 0.047 2.112 255.767
expression -9.0538 11.141 -0.813 0.426 -32.223 14.116
Omnibus: 2.066 Durbin-Watson: 2.354
Prob(Omnibus): 0.356 Jarque-Bera (JB): 1.172
Skew: 0.194 Prob(JB): 0.557
Kurtosis: 1.964 Cond. No. 48.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.207 0.657 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.505
Model: OLS Adj. R-squared: 0.370
Method: Least Squares F-statistic: 3.740
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0449
Time: 22:56:42 Log-Likelihood: -70.027
No. Observations: 15 AIC: 148.1
Df Residuals: 11 BIC: 150.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 57.5160 87.372 0.658 0.524 -134.789 249.821
C(dose)[T.1] 226.6587 174.549 1.299 0.221 -157.521 610.838
expression 2.0531 17.943 0.114 0.911 -37.439 41.545
expression:C(dose)[T.1] -36.6395 35.918 -1.020 0.330 -115.694 42.415
Omnibus: 0.177 Durbin-Watson: 1.119
Prob(Omnibus): 0.915 Jarque-Bera (JB): 0.048
Skew: -0.065 Prob(JB): 0.976
Kurtosis: 2.754 Cond. No. 137.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.458
Model: OLS Adj. R-squared: 0.368
Method: Least Squares F-statistic: 5.073
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0253
Time: 22:56:43 Log-Likelihood: -70.704
No. Observations: 15 AIC: 147.4
Df Residuals: 12 BIC: 149.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 101.6614 76.030 1.337 0.206 -63.994 267.317
C(dose)[T.1] 49.3125 15.607 3.160 0.008 15.307 83.318
expression -7.0905 15.570 -0.455 0.657 -41.014 26.833
Omnibus: 2.426 Durbin-Watson: 0.813
Prob(Omnibus): 0.297 Jarque-Bera (JB): 1.718
Skew: -0.798 Prob(JB): 0.424
Kurtosis: 2.554 Cond. No. 49.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:56:43 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.007
Model: OLS Adj. R-squared: -0.069
Method: Least Squares F-statistic: 0.09644
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.761
Time: 22:56:43 Log-Likelihood: -75.245
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 124.0747 98.437 1.260 0.230 -88.585 336.734
expression -6.2869 20.244 -0.311 0.761 -50.021 37.448
Omnibus: 0.151 Durbin-Watson: 1.612
Prob(Omnibus): 0.927 Jarque-Bera (JB): 0.364
Skew: 0.015 Prob(JB): 0.833
Kurtosis: 2.237 Cond. No. 49.3