AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.901 0.354 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.664
Model: OLS Adj. R-squared: 0.611
Method: Least Squares F-statistic: 12.53
Date: Thu, 21 Nov 2024 Prob (F-statistic): 9.49e-05
Time: 05:19:42 Log-Likelihood: -100.56
No. Observations: 23 AIC: 209.1
Df Residuals: 19 BIC: 213.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 101.8192 71.234 1.429 0.169 -47.276 250.914
C(dose)[T.1] 58.8711 109.894 0.536 0.598 -171.141 288.883
expression -7.7903 11.613 -0.671 0.510 -32.097 16.516
expression:C(dose)[T.1] -0.1288 17.013 -0.008 0.994 -35.738 35.480
Omnibus: 0.018 Durbin-Watson: 1.804
Prob(Omnibus): 0.991 Jarque-Bera (JB): 0.218
Skew: 0.025 Prob(JB): 0.897
Kurtosis: 2.526 Cond. No. 210.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.664
Model: OLS Adj. R-squared: 0.631
Method: Least Squares F-statistic: 19.78
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.82e-05
Time: 05:19:42 Log-Likelihood: -100.56
No. Observations: 23 AIC: 207.1
Df Residuals: 20 BIC: 210.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 102.1858 50.901 2.008 0.058 -3.992 208.364
C(dose)[T.1] 58.0429 9.909 5.858 0.000 37.374 78.712
expression -7.8503 8.272 -0.949 0.354 -25.105 9.405
Omnibus: 0.019 Durbin-Watson: 1.805
Prob(Omnibus): 0.991 Jarque-Bera (JB): 0.219
Skew: 0.026 Prob(JB): 0.896
Kurtosis: 2.525 Cond. No. 78.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:19:42 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.088
Model: OLS Adj. R-squared: 0.045
Method: Least Squares F-statistic: 2.027
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.169
Time: 05:19:42 Log-Likelihood: -112.05
No. Observations: 23 AIC: 228.1
Df Residuals: 21 BIC: 230.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -25.1983 74.013 -0.340 0.737 -179.117 128.721
expression 16.3976 11.517 1.424 0.169 -7.554 40.350
Omnibus: 0.575 Durbin-Watson: 2.633
Prob(Omnibus): 0.750 Jarque-Bera (JB): 0.525
Skew: 0.323 Prob(JB): 0.769
Kurtosis: 2.638 Cond. No. 70.7

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.555 0.471 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.606
Model: OLS Adj. R-squared: 0.498
Method: Least Squares F-statistic: 5.629
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0138
Time: 05:19:42 Log-Likelihood: -68.323
No. Observations: 15 AIC: 144.6
Df Residuals: 11 BIC: 147.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 36.4919 56.154 0.650 0.529 -87.103 160.087
C(dose)[T.1] 222.8341 90.888 2.452 0.032 22.790 422.878
expression 5.4257 9.686 0.560 0.587 -15.893 26.744
expression:C(dose)[T.1] -29.7293 15.471 -1.922 0.081 -63.780 4.322
Omnibus: 9.415 Durbin-Watson: 1.170
Prob(Omnibus): 0.009 Jarque-Bera (JB): 5.809
Skew: -1.402 Prob(JB): 0.0548
Kurtosis: 4.198 Cond. No. 100.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.473
Model: OLS Adj. R-squared: 0.385
Method: Least Squares F-statistic: 5.388
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0214
Time: 05:19:42 Log-Likelihood: -70.494
No. Observations: 15 AIC: 147.0
Df Residuals: 12 BIC: 149.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 102.9375 48.959 2.103 0.057 -3.735 209.610
C(dose)[T.1] 50.2533 15.453 3.252 0.007 16.584 83.922
expression -6.2276 8.357 -0.745 0.471 -24.436 11.981
Omnibus: 3.173 Durbin-Watson: 0.939
Prob(Omnibus): 0.205 Jarque-Bera (JB): 2.085
Skew: -0.904 Prob(JB): 0.353
Kurtosis: 2.743 Cond. No. 38.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:19:42 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.009
Model: OLS Adj. R-squared: -0.067
Method: Least Squares F-statistic: 0.1159
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.739
Time: 05:19:42 Log-Likelihood: -75.234
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 115.2901 64.324 1.792 0.096 -23.673 254.253
expression -3.7331 10.967 -0.340 0.739 -27.425 19.959
Omnibus: 0.524 Durbin-Watson: 1.691
Prob(Omnibus): 0.770 Jarque-Bera (JB): 0.554
Skew: -0.074 Prob(JB): 0.758
Kurtosis: 2.070 Cond. No. 38.4