AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.460 | 0.506 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.674 |
Model: | OLS | Adj. R-squared: | 0.622 |
Method: | Least Squares | F-statistic: | 13.07 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 7.29e-05 |
Time: | 03:55:48 | Log-Likelihood: | -100.23 |
No. Observations: | 23 | AIC: | 208.5 |
Df Residuals: | 19 | BIC: | 213.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -16.0072 | 60.177 | -0.266 | 0.793 | -141.959 109.945 |
C(dose)[T.1] | 136.4530 | 82.863 | 1.647 | 0.116 | -36.982 309.888 |
expression | 10.2936 | 8.778 | 1.173 | 0.255 | -8.079 28.666 |
expression:C(dose)[T.1] | -12.3314 | 12.532 | -0.984 | 0.337 | -38.561 13.898 |
Omnibus: | 0.156 | Durbin-Watson: | 1.998 |
Prob(Omnibus): | 0.925 | Jarque-Bera (JB): | 0.170 |
Skew: | 0.151 | Prob(JB): | 0.918 |
Kurtosis: | 2.706 | Cond. No. | 167. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.657 |
Model: | OLS | Adj. R-squared: | 0.623 |
Method: | Least Squares | F-statistic: | 19.15 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.26e-05 |
Time: | 03:55:48 | Log-Likelihood: | -100.80 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 20 | BIC: | 211.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 25.2630 | 43.119 | 0.586 | 0.565 | -64.682 115.208 |
C(dose)[T.1] | 55.4198 | 9.199 | 6.025 | 0.000 | 36.231 74.609 |
expression | 4.2434 | 6.260 | 0.678 | 0.506 | -8.814 17.301 |
Omnibus: | 0.005 | Durbin-Watson: | 1.829 |
Prob(Omnibus): | 0.997 | Jarque-Bera (JB): | 0.189 |
Skew: | -0.008 | Prob(JB): | 0.910 |
Kurtosis: | 2.556 | Cond. No. | 67.8 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:55:48 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.034 |
Model: | OLS | Adj. R-squared: | -0.012 |
Method: | Least Squares | F-statistic: | 0.7474 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.397 |
Time: | 03:55:48 | Log-Likelihood: | -112.70 |
No. Observations: | 23 | AIC: | 229.4 |
Df Residuals: | 21 | BIC: | 231.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 134.7285 | 64.024 | 2.104 | 0.048 | 1.582 267.875 |
expression | -8.3520 | 9.661 | -0.865 | 0.397 | -28.443 11.738 |
Omnibus: | 1.690 | Durbin-Watson: | 2.495 |
Prob(Omnibus): | 0.430 | Jarque-Bera (JB): | 1.096 |
Skew: | 0.221 | Prob(JB): | 0.578 |
Kurtosis: | 2.026 | Cond. No. | 61.2 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.149 | 0.706 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.528 |
Model: | OLS | Adj. R-squared: | 0.399 |
Method: | Least Squares | F-statistic: | 4.096 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0353 |
Time: | 03:55:48 | Log-Likelihood: | -69.675 |
No. Observations: | 15 | AIC: | 147.4 |
Df Residuals: | 11 | BIC: | 150.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -3.0000 | 97.216 | -0.031 | 0.976 | -216.971 210.971 |
C(dose)[T.1] | 203.2069 | 122.124 | 1.664 | 0.124 | -65.587 472.001 |
expression | 11.4816 | 15.745 | 0.729 | 0.481 | -23.172 46.136 |
expression:C(dose)[T.1] | -26.7845 | 20.674 | -1.296 | 0.222 | -72.288 18.719 |
Omnibus: | 7.296 | Durbin-Watson: | 1.096 |
Prob(Omnibus): | 0.026 | Jarque-Bera (JB): | 4.160 |
Skew: | -1.214 | Prob(JB): | 0.125 |
Kurtosis: | 3.869 | Cond. No. | 133. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.456 |
Model: | OLS | Adj. R-squared: | 0.365 |
Method: | Least Squares | F-statistic: | 5.020 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0260 |
Time: | 03:55:48 | Log-Likelihood: | -70.740 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 12 | BIC: | 149.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 92.2911 | 65.342 | 1.412 | 0.183 | -50.077 234.659 |
C(dose)[T.1] | 46.4720 | 17.158 | 2.708 | 0.019 | 9.088 83.856 |
expression | -4.0532 | 10.488 | -0.386 | 0.706 | -26.905 18.799 |
Omnibus: | 2.863 | Durbin-Watson: | 0.713 |
Prob(Omnibus): | 0.239 | Jarque-Bera (JB): | 1.881 |
Skew: | -0.856 | Prob(JB): | 0.390 |
Kurtosis: | 2.719 | Cond. No. | 50.8 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:55:48 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.123 |
Model: | OLS | Adj. R-squared: | 0.055 |
Method: | Least Squares | F-statistic: | 1.818 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.201 |
Time: | 03:55:48 | Log-Likelihood: | -74.318 |
No. Observations: | 15 | AIC: | 152.6 |
Df Residuals: | 13 | BIC: | 154.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 184.4902 | 68.022 | 2.712 | 0.018 | 37.538 331.442 |
expression | -15.7256 | 11.662 | -1.348 | 0.201 | -40.919 9.468 |
Omnibus: | 1.023 | Durbin-Watson: | 1.207 |
Prob(Omnibus): | 0.600 | Jarque-Bera (JB): | 0.811 |
Skew: | -0.281 | Prob(JB): | 0.667 |
Kurtosis: | 2.009 | Cond. No. | 42.9 |