AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.165 | 0.689 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.655 |
Model: | OLS | Adj. R-squared: | 0.601 |
Method: | Least Squares | F-statistic: | 12.03 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000122 |
Time: | 04:39:39 | Log-Likelihood: | -100.87 |
No. Observations: | 23 | AIC: | 209.7 |
Df Residuals: | 19 | BIC: | 214.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 53.4036 | 30.027 | 1.779 | 0.091 | -9.444 116.251 |
C(dose)[T.1] | 68.1666 | 39.277 | 1.736 | 0.099 | -14.040 150.373 |
expression | 0.2399 | 8.762 | 0.027 | 0.978 | -18.099 18.579 |
expression:C(dose)[T.1] | -4.9797 | 12.052 | -0.413 | 0.684 | -30.204 20.245 |
Omnibus: | 0.099 | Durbin-Watson: | 1.769 |
Prob(Omnibus): | 0.952 | Jarque-Bera (JB): | 0.324 |
Skew: | 0.018 | Prob(JB): | 0.850 |
Kurtosis: | 2.419 | Cond. No. | 41.1 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.617 |
Method: | Least Squares | F-statistic: | 18.73 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.61e-05 |
Time: | 04:39:39 | Log-Likelihood: | -100.97 |
No. Observations: | 23 | AIC: | 207.9 |
Df Residuals: | 20 | BIC: | 211.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 62.2314 | 20.657 | 3.013 | 0.007 | 19.142 105.321 |
C(dose)[T.1] | 52.3924 | 9.038 | 5.797 | 0.000 | 33.539 71.246 |
expression | -2.3922 | 5.890 | -0.406 | 0.689 | -14.679 9.894 |
Omnibus: | 0.142 | Durbin-Watson: | 1.786 |
Prob(Omnibus): | 0.932 | Jarque-Bera (JB): | 0.334 |
Skew: | 0.129 | Prob(JB): | 0.846 |
Kurtosis: | 2.469 | Cond. No. | 17.1 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:39:39 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.067 |
Model: | OLS | Adj. R-squared: | 0.023 |
Method: | Least Squares | F-statistic: | 1.511 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.233 |
Time: | 04:39:39 | Log-Likelihood: | -112.31 |
No. Observations: | 23 | AIC: | 228.6 |
Df Residuals: | 21 | BIC: | 230.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 115.0986 | 29.612 | 3.887 | 0.001 | 53.518 176.679 |
expression | -11.1790 | 9.093 | -1.229 | 0.233 | -30.089 7.731 |
Omnibus: | 5.856 | Durbin-Watson: | 2.357 |
Prob(Omnibus): | 0.054 | Jarque-Bera (JB): | 1.985 |
Skew: | 0.292 | Prob(JB): | 0.371 |
Kurtosis: | 1.684 | Cond. No. | 15.1 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.478 | 0.503 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.477 |
Model: | OLS | Adj. R-squared: | 0.334 |
Method: | Least Squares | F-statistic: | 3.341 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0597 |
Time: | 04:39:39 | Log-Likelihood: | -70.442 |
No. Observations: | 15 | AIC: | 148.9 |
Df Residuals: | 11 | BIC: | 151.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 68.2075 | 48.698 | 1.401 | 0.189 | -38.977 175.392 |
C(dose)[T.1] | 74.8579 | 60.668 | 1.234 | 0.243 | -58.672 208.387 |
expression | -0.2305 | 13.991 | -0.016 | 0.987 | -31.024 30.563 |
expression:C(dose)[T.1] | -6.2027 | 16.314 | -0.380 | 0.711 | -42.110 29.704 |
Omnibus: | 7.657 | Durbin-Watson: | 0.834 |
Prob(Omnibus): | 0.022 | Jarque-Bera (JB): | 4.507 |
Skew: | -1.276 | Prob(JB): | 0.105 |
Kurtosis: | 3.832 | Cond. No. | 47.3 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.470 |
Model: | OLS | Adj. R-squared: | 0.382 |
Method: | Least Squares | F-statistic: | 5.318 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0222 |
Time: | 04:39:39 | Log-Likelihood: | -70.540 |
No. Observations: | 15 | AIC: | 147.1 |
Df Residuals: | 12 | BIC: | 149.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 83.6211 | 26.002 | 3.216 | 0.007 | 26.967 140.275 |
C(dose)[T.1] | 52.7000 | 16.247 | 3.244 | 0.007 | 17.301 88.099 |
expression | -4.7923 | 6.935 | -0.691 | 0.503 | -19.902 10.317 |
Omnibus: | 6.030 | Durbin-Watson: | 0.866 |
Prob(Omnibus): | 0.049 | Jarque-Bera (JB): | 3.512 |
Skew: | -1.164 | Prob(JB): | 0.173 |
Kurtosis: | 3.452 | Cond. No. | 14.2 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:39:39 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.005 |
Model: | OLS | Adj. R-squared: | -0.071 |
Method: | Least Squares | F-statistic: | 0.06597 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.801 |
Time: | 04:39:39 | Log-Likelihood: | -75.262 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 85.2721 | 34.218 | 2.492 | 0.027 | 11.348 159.196 |
expression | 2.2274 | 8.672 | 0.257 | 0.801 | -16.507 20.962 |
Omnibus: | 0.552 | Durbin-Watson: | 1.519 |
Prob(Omnibus): | 0.759 | Jarque-Bera (JB): | 0.572 |
Skew: | 0.119 | Prob(JB): | 0.751 |
Kurtosis: | 2.073 | Cond. No. | 14.1 |