AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.296 0.593 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.676
Model: OLS Adj. R-squared: 0.624
Method: Least Squares F-statistic: 13.19
Date: Thu, 21 Nov 2024 Prob (F-statistic): 6.88e-05
Time: 04:05:17 Log-Likelihood: -100.16
No. Observations: 23 AIC: 208.3
Df Residuals: 19 BIC: 212.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 155.0562 82.131 1.888 0.074 -16.847 326.959
C(dose)[T.1] -60.7189 106.072 -0.572 0.574 -282.730 161.292
expression -18.0288 14.644 -1.231 0.233 -48.679 12.621
expression:C(dose)[T.1] 20.0662 17.909 1.120 0.276 -17.417 57.550
Omnibus: 0.615 Durbin-Watson: 2.471
Prob(Omnibus): 0.735 Jarque-Bera (JB): 0.637
Skew: -0.083 Prob(JB): 0.727
Kurtosis: 2.201 Cond. No. 214.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.654
Model: OLS Adj. R-squared: 0.620
Method: Least Squares F-statistic: 18.92
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.45e-05
Time: 04:05:17 Log-Likelihood: -100.89
No. Observations: 23 AIC: 207.8
Df Residuals: 20 BIC: 211.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 80.0072 47.834 1.673 0.110 -19.774 179.788
C(dose)[T.1] 57.4376 11.519 4.987 0.000 33.410 81.465
expression -4.6121 8.483 -0.544 0.593 -22.308 13.084
Omnibus: 0.033 Durbin-Watson: 1.953
Prob(Omnibus): 0.984 Jarque-Bera (JB): 0.239
Skew: -0.040 Prob(JB): 0.887
Kurtosis: 2.507 Cond. No. 69.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:05:18 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.224
Model: OLS Adj. R-squared: 0.187
Method: Least Squares F-statistic: 6.069
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0225
Time: 04:05:18 Log-Likelihood: -110.19
No. Observations: 23 AIC: 224.4
Df Residuals: 21 BIC: 226.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -59.2463 56.766 -1.044 0.308 -177.298 58.805
expression 23.0878 9.372 2.464 0.022 3.598 42.578
Omnibus: 0.742 Durbin-Watson: 2.087
Prob(Omnibus): 0.690 Jarque-Bera (JB): 0.706
Skew: 0.369 Prob(JB): 0.703
Kurtosis: 2.560 Cond. No. 55.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.302 0.276 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.518
Model: OLS Adj. R-squared: 0.387
Method: Least Squares F-statistic: 3.943
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0391
Time: 04:05:18 Log-Likelihood: -69.824
No. Observations: 15 AIC: 147.6
Df Residuals: 11 BIC: 150.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 181.1874 91.091 1.989 0.072 -19.302 381.677
C(dose)[T.1] -66.6809 198.084 -0.337 0.743 -502.661 369.299
expression -19.6149 15.587 -1.258 0.234 -53.921 14.691
expression:C(dose)[T.1] 19.9749 33.660 0.593 0.565 -54.110 94.060
Omnibus: 2.995 Durbin-Watson: 1.352
Prob(Omnibus): 0.224 Jarque-Bera (JB): 1.821
Skew: -0.851 Prob(JB): 0.402
Kurtosis: 2.864 Cond. No. 186.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.503
Model: OLS Adj. R-squared: 0.420
Method: Least Squares F-statistic: 6.066
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0151
Time: 04:05:18 Log-Likelihood: -70.060
No. Observations: 15 AIC: 146.1
Df Residuals: 12 BIC: 148.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 156.3464 78.689 1.987 0.070 -15.102 327.795
C(dose)[T.1] 50.5127 14.994 3.369 0.006 17.844 83.182
expression -15.3317 13.437 -1.141 0.276 -44.608 13.945
Omnibus: 5.121 Durbin-Watson: 1.225
Prob(Omnibus): 0.077 Jarque-Bera (JB): 2.764
Skew: -1.026 Prob(JB): 0.251
Kurtosis: 3.460 Cond. No. 64.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:05:18 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.032
Model: OLS Adj. R-squared: -0.042
Method: Least Squares F-statistic: 0.4355
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.521
Time: 04:05:18 Log-Likelihood: -75.053
No. Observations: 15 AIC: 154.1
Df Residuals: 13 BIC: 155.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 162.9288 105.425 1.545 0.146 -64.829 390.686
expression -11.8490 17.954 -0.660 0.521 -50.637 26.939
Omnibus: 1.375 Durbin-Watson: 1.919
Prob(Omnibus): 0.503 Jarque-Bera (JB): 0.859
Skew: 0.189 Prob(JB): 0.651
Kurtosis: 1.891 Cond. No. 63.7