AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.001 | 0.974 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.663 |
Model: | OLS | Adj. R-squared: | 0.610 |
Method: | Least Squares | F-statistic: | 12.48 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.71e-05 |
Time: | 04:45:55 | Log-Likelihood: | -100.59 |
No. Observations: | 23 | AIC: | 209.2 |
Df Residuals: | 19 | BIC: | 213.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -25.2777 | 100.611 | -0.251 | 0.804 | -235.859 185.304 |
C(dose)[T.1] | 158.4875 | 117.650 | 1.347 | 0.194 | -87.756 404.731 |
expression | 26.3100 | 33.241 | 0.791 | 0.438 | -43.265 95.885 |
expression:C(dose)[T.1] | -34.5134 | 38.481 | -0.897 | 0.381 | -115.055 46.029 |
Omnibus: | 0.458 | Durbin-Watson: | 1.855 |
Prob(Omnibus): | 0.795 | Jarque-Bera (JB): | 0.558 |
Skew: | -0.048 | Prob(JB): | 0.757 |
Kurtosis: | 2.243 | Cond. No. | 132. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.83e-05 |
Time: | 04:45:55 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 52.5293 | 50.708 | 1.036 | 0.313 | -53.246 158.305 |
C(dose)[T.1] | 53.2774 | 8.950 | 5.953 | 0.000 | 34.607 71.947 |
expression | 0.5558 | 16.664 | 0.033 | 0.974 | -34.205 35.316 |
Omnibus: | 0.314 | Durbin-Watson: | 1.887 |
Prob(Omnibus): | 0.855 | Jarque-Bera (JB): | 0.480 |
Skew: | 0.059 | Prob(JB): | 0.787 |
Kurtosis: | 2.302 | Cond. No. | 39.9 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:45:55 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.027 |
Model: | OLS | Adj. R-squared: | -0.019 |
Method: | Least Squares | F-statistic: | 0.5907 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.451 |
Time: | 04:45:55 | Log-Likelihood: | -112.79 |
No. Observations: | 23 | AIC: | 229.6 |
Df Residuals: | 21 | BIC: | 231.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 17.0736 | 81.816 | 0.209 | 0.837 | -153.072 187.219 |
expression | 20.3886 | 26.528 | 0.769 | 0.451 | -34.779 75.556 |
Omnibus: | 2.061 | Durbin-Watson: | 2.440 |
Prob(Omnibus): | 0.357 | Jarque-Bera (JB): | 1.462 |
Skew: | 0.404 | Prob(JB): | 0.481 |
Kurtosis: | 2.066 | Cond. No. | 39.2 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.032 | 0.860 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.628 |
Model: | OLS | Adj. R-squared: | 0.526 |
Method: | Least Squares | F-statistic: | 6.177 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0102 |
Time: | 04:45:55 | Log-Likelihood: | -67.893 |
No. Observations: | 15 | AIC: | 143.8 |
Df Residuals: | 11 | BIC: | 146.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 111.5589 | 55.304 | 2.017 | 0.069 | -10.164 233.281 |
C(dose)[T.1] | -219.8391 | 118.700 | -1.852 | 0.091 | -481.097 41.419 |
expression | -11.3562 | 14.003 | -0.811 | 0.435 | -42.177 19.464 |
expression:C(dose)[T.1] | 73.3878 | 32.075 | 2.288 | 0.043 | 2.792 143.983 |
Omnibus: | 1.020 | Durbin-Watson: | 1.318 |
Prob(Omnibus): | 0.601 | Jarque-Bera (JB): | 0.720 |
Skew: | -0.074 | Prob(JB): | 0.698 |
Kurtosis: | 1.937 | Cond. No. | 83.7 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.450 |
Model: | OLS | Adj. R-squared: | 0.359 |
Method: | Least Squares | F-statistic: | 4.914 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0276 |
Time: | 04:45:55 | Log-Likelihood: | -70.813 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 57.2025 | 58.089 | 0.985 | 0.344 | -69.363 183.768 |
C(dose)[T.1] | 49.8816 | 16.175 | 3.084 | 0.009 | 14.639 85.124 |
expression | 2.6315 | 14.653 | 0.180 | 0.860 | -29.296 34.559 |
Omnibus: | 3.070 | Durbin-Watson: | 0.818 |
Prob(Omnibus): | 0.215 | Jarque-Bera (JB): | 2.091 |
Skew: | -0.899 | Prob(JB): | 0.352 |
Kurtosis: | 2.662 | Cond. No. | 30.3 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:45:55 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.015 |
Model: | OLS | Adj. R-squared: | -0.061 |
Method: | Least Squares | F-statistic: | 0.1921 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.668 |
Time: | 04:45:55 | Log-Likelihood: | -75.190 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 123.7463 | 69.375 | 1.784 | 0.098 | -26.130 273.622 |
expression | -8.0273 | 18.317 | -0.438 | 0.668 | -47.600 31.545 |
Omnibus: | 2.065 | Durbin-Watson: | 1.524 |
Prob(Omnibus): | 0.356 | Jarque-Bera (JB): | 1.022 |
Skew: | 0.198 | Prob(JB): | 0.600 |
Kurtosis: | 1.784 | Cond. No. | 27.8 |