AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.396 0.536 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.659
Model: OLS Adj. R-squared: 0.605
Method: Least Squares F-statistic: 12.25
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000109
Time: 04:35:26 Log-Likelihood: -100.73
No. Observations: 23 AIC: 209.5
Df Residuals: 19 BIC: 214.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 22.9301 43.278 0.530 0.602 -67.653 113.513
C(dose)[T.1] 78.2155 56.822 1.376 0.185 -40.715 197.146
expression 5.7257 7.842 0.730 0.474 -10.689 22.140
expression:C(dose)[T.1] -4.4987 10.480 -0.429 0.673 -26.433 17.436
Omnibus: 0.265 Durbin-Watson: 1.842
Prob(Omnibus): 0.876 Jarque-Bera (JB): 0.450
Skew: -0.087 Prob(JB): 0.798
Kurtosis: 2.337 Cond. No. 95.6

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.621
Method: Least Squares F-statistic: 19.06
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.33e-05
Time: 04:35:26 Log-Likelihood: -100.84
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 36.6923 28.473 1.289 0.212 -22.702 96.086
C(dose)[T.1] 54.1288 8.775 6.169 0.000 35.825 72.433
expression 3.2064 5.095 0.629 0.536 -7.421 13.834
Omnibus: 0.196 Durbin-Watson: 1.882
Prob(Omnibus): 0.906 Jarque-Bera (JB): 0.403
Skew: -0.005 Prob(JB): 0.817
Kurtosis: 2.351 Cond. No. 36.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:35:26 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.046
Method: Least Squares F-statistic: 0.02402
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.878
Time: 04:35:27 Log-Likelihood: -113.09
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 86.6612 45.384 1.909 0.070 -7.721 181.043
expression -1.2992 8.383 -0.155 0.878 -18.734 16.135
Omnibus: 3.501 Durbin-Watson: 2.498
Prob(Omnibus): 0.174 Jarque-Bera (JB): 1.605
Skew: 0.287 Prob(JB): 0.448
Kurtosis: 1.840 Cond. No. 35.2

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.573 0.464 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.480
Model: OLS Adj. R-squared: 0.338
Method: Least Squares F-statistic: 3.378
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0581
Time: 04:35:27 Log-Likelihood: -70.402
No. Observations: 15 AIC: 148.8
Df Residuals: 11 BIC: 151.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 124.2876 80.879 1.537 0.153 -53.727 302.302
C(dose)[T.1] 11.4307 95.768 0.119 0.907 -199.353 222.214
expression -10.3012 14.500 -0.710 0.492 -42.215 21.613
expression:C(dose)[T.1] 6.2188 18.029 0.345 0.737 -33.462 45.900
Omnibus: 4.106 Durbin-Watson: 0.803
Prob(Omnibus): 0.128 Jarque-Bera (JB): 2.393
Skew: -0.977 Prob(JB): 0.302
Kurtosis: 3.091 Cond. No. 90.9

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.474
Model: OLS Adj. R-squared: 0.386
Method: Least Squares F-statistic: 5.405
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0212
Time: 04:35:27 Log-Likelihood: -70.483
No. Observations: 15 AIC: 147.0
Df Residuals: 12 BIC: 149.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 102.0850 47.140 2.166 0.051 -0.625 204.795
C(dose)[T.1] 43.9051 16.891 2.599 0.023 7.103 80.708
expression -6.2788 8.295 -0.757 0.464 -24.351 11.794
Omnibus: 5.843 Durbin-Watson: 0.785
Prob(Omnibus): 0.054 Jarque-Bera (JB): 3.297
Skew: -1.120 Prob(JB): 0.192
Kurtosis: 3.504 Cond. No. 33.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:35:27 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.178
Model: OLS Adj. R-squared: 0.114
Method: Least Squares F-statistic: 2.809
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.118
Time: 04:35:27 Log-Likelihood: -73.833
No. Observations: 15 AIC: 151.7
Df Residuals: 13 BIC: 153.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 170.7395 46.901 3.640 0.003 69.417 272.062
expression -15.2012 9.070 -1.676 0.118 -34.796 4.393
Omnibus: 0.843 Durbin-Watson: 1.568
Prob(Omnibus): 0.656 Jarque-Bera (JB): 0.749
Skew: -0.290 Prob(JB): 0.687
Kurtosis: 2.071 Cond. No. 27.3