AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.014 0.906 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.743
Model: OLS Adj. R-squared: 0.702
Method: Least Squares F-statistic: 18.30
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.88e-06
Time: 04:52:50 Log-Likelihood: -97.485
No. Observations: 23 AIC: 203.0
Df Residuals: 19 BIC: 207.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 107.5987 51.264 2.099 0.049 0.303 214.895
C(dose)[T.1] -267.7413 122.215 -2.191 0.041 -523.541 -11.942
expression -8.8583 8.459 -1.047 0.308 -26.564 8.847
expression:C(dose)[T.1] 50.0275 19.025 2.630 0.017 10.207 89.848
Omnibus: 1.262 Durbin-Watson: 2.585
Prob(Omnibus): 0.532 Jarque-Bera (JB): 1.098
Skew: 0.360 Prob(JB): 0.577
Kurtosis: 2.207 Cond. No. 239.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.52
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.81e-05
Time: 04:52:50 Log-Likelihood: -101.05
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 47.9870 52.337 0.917 0.370 -61.186 157.160
C(dose)[T.1] 52.8469 9.677 5.461 0.000 32.662 73.032
expression 1.0322 8.625 0.120 0.906 -16.959 19.024
Omnibus: 0.312 Durbin-Watson: 1.870
Prob(Omnibus): 0.856 Jarque-Bera (JB): 0.479
Skew: 0.070 Prob(JB): 0.787
Kurtosis: 2.307 Cond. No. 77.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:52:50 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.126
Model: OLS Adj. R-squared: 0.085
Method: Least Squares F-statistic: 3.036
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0960
Time: 04:52:50 Log-Likelihood: -111.55
No. Observations: 23 AIC: 227.1
Df Residuals: 21 BIC: 229.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -51.4580 75.580 -0.681 0.503 -208.636 105.720
expression 20.9736 12.036 1.743 0.096 -4.057 46.004
Omnibus: 0.441 Durbin-Watson: 2.322
Prob(Omnibus): 0.802 Jarque-Bera (JB): 0.512
Skew: -0.279 Prob(JB): 0.774
Kurtosis: 2.527 Cond. No. 72.1

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.010 0.921 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.481
Model: OLS Adj. R-squared: 0.339
Method: Least Squares F-statistic: 3.397
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0573
Time: 04:52:50 Log-Likelihood: -70.382
No. Observations: 15 AIC: 148.8
Df Residuals: 11 BIC: 151.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 117.8831 115.497 1.021 0.329 -136.324 372.090
C(dose)[T.1] -92.0206 174.147 -0.528 0.608 -475.316 291.275
expression -7.7310 17.607 -0.439 0.669 -46.484 31.022
expression:C(dose)[T.1] 22.8756 27.923 0.819 0.430 -38.582 84.333
Omnibus: 3.834 Durbin-Watson: 0.998
Prob(Omnibus): 0.147 Jarque-Bera (JB): 2.165
Skew: -0.929 Prob(JB): 0.339
Kurtosis: 3.108 Cond. No. 179.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 4.894
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0279
Time: 04:52:50 Log-Likelihood: -70.827
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 58.5229 88.701 0.660 0.522 -134.740 251.786
C(dose)[T.1] 49.9240 17.296 2.886 0.014 12.239 87.609
expression 1.3646 13.477 0.101 0.921 -27.999 30.728
Omnibus: 2.751 Durbin-Watson: 0.779
Prob(Omnibus): 0.253 Jarque-Bera (JB): 1.871
Skew: -0.847 Prob(JB): 0.392
Kurtosis: 2.645 Cond. No. 73.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:52:50 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.067
Model: OLS Adj. R-squared: -0.005
Method: Least Squares F-statistic: 0.9315
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.352
Time: 04:52:50 Log-Likelihood: -74.781
No. Observations: 15 AIC: 153.6
Df Residuals: 13 BIC: 155.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 186.0250 96.194 1.934 0.075 -21.790 393.839
expression -14.7966 15.331 -0.965 0.352 -47.916 18.323
Omnibus: 0.600 Durbin-Watson: 1.681
Prob(Omnibus): 0.741 Jarque-Bera (JB): 0.597
Skew: 0.144 Prob(JB): 0.742
Kurtosis: 2.066 Cond. No. 63.0