AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.604 0.446 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.686
Model: OLS Adj. R-squared: 0.637
Method: Least Squares F-statistic: 13.87
Date: Thu, 03 Apr 2025 Prob (F-statistic): 5.01e-05
Time: 22:57:33 Log-Likelihood: -99.766
No. Observations: 23 AIC: 207.5
Df Residuals: 19 BIC: 212.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -21.9186 51.309 -0.427 0.674 -129.309 85.472
C(dose)[T.1] 136.0315 61.999 2.194 0.041 6.266 265.797
expression 12.5716 8.417 1.494 0.152 -5.046 30.189
expression:C(dose)[T.1] -13.8754 10.821 -1.282 0.215 -36.525 8.774
Omnibus: 0.127 Durbin-Watson: 1.246
Prob(Omnibus): 0.938 Jarque-Bera (JB): 0.303
Skew: -0.137 Prob(JB): 0.859
Kurtosis: 2.509 Cond. No. 115.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.659
Model: OLS Adj. R-squared: 0.625
Method: Least Squares F-statistic: 19.36
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.10e-05
Time: 22:57:33 Log-Likelihood: -100.72
No. Observations: 23 AIC: 207.4
Df Residuals: 20 BIC: 210.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 28.9166 33.089 0.874 0.393 -40.107 97.940
C(dose)[T.1] 57.5907 10.228 5.631 0.000 36.255 78.926
expression 4.1767 5.375 0.777 0.446 -7.034 15.388
Omnibus: 0.577 Durbin-Watson: 1.793
Prob(Omnibus): 0.749 Jarque-Bera (JB): 0.624
Skew: 0.098 Prob(JB): 0.732
Kurtosis: 2.218 Cond. No. 45.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:57:34 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.119
Model: OLS Adj. R-squared: 0.077
Method: Least Squares F-statistic: 2.846
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.106
Time: 22:57:34 Log-Likelihood: -111.64
No. Observations: 23 AIC: 227.3
Df Residuals: 21 BIC: 229.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 146.6371 40.244 3.644 0.002 62.946 230.328
expression -12.0177 7.124 -1.687 0.106 -26.833 2.798
Omnibus: 1.821 Durbin-Watson: 2.491
Prob(Omnibus): 0.402 Jarque-Bera (JB): 1.037
Skew: 0.088 Prob(JB): 0.595
Kurtosis: 1.975 Cond. No. 34.6

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.851 0.199 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.531
Model: OLS Adj. R-squared: 0.403
Method: Least Squares F-statistic: 4.152
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0340
Time: 22:57:34 Log-Likelihood: -69.621
No. Observations: 15 AIC: 147.2
Df Residuals: 11 BIC: 150.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 141.7606 59.852 2.369 0.037 10.027 273.494
C(dose)[T.1] 11.5910 88.036 0.132 0.898 -182.175 205.357
expression -14.7732 11.690 -1.264 0.232 -40.503 10.956
expression:C(dose)[T.1] 7.6354 17.031 0.448 0.663 -29.849 45.119
Omnibus: 2.062 Durbin-Watson: 1.242
Prob(Omnibus): 0.357 Jarque-Bera (JB): 1.458
Skew: -0.730 Prob(JB): 0.483
Kurtosis: 2.555 Cond. No. 81.8

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.522
Model: OLS Adj. R-squared: 0.443
Method: Least Squares F-statistic: 6.564
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0119
Time: 22:57:34 Log-Likelihood: -69.757
No. Observations: 15 AIC: 145.5
Df Residuals: 12 BIC: 147.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 123.6596 42.688 2.897 0.013 30.651 216.668
C(dose)[T.1] 50.4681 14.680 3.438 0.005 18.484 82.453
expression -11.1757 8.213 -1.361 0.199 -29.071 6.719
Omnibus: 2.007 Durbin-Watson: 1.106
Prob(Omnibus): 0.367 Jarque-Bera (JB): 1.451
Skew: -0.722 Prob(JB): 0.484
Kurtosis: 2.514 Cond. No. 31.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:57:34 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.052
Model: OLS Adj. R-squared: -0.021
Method: Least Squares F-statistic: 0.7145
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.413
Time: 22:57:34 Log-Likelihood: -74.899
No. Observations: 15 AIC: 153.8
Df Residuals: 13 BIC: 155.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 141.4217 57.358 2.466 0.028 17.508 265.335
expression -9.3780 11.095 -0.845 0.413 -33.347 14.591
Omnibus: 3.199 Durbin-Watson: 1.730
Prob(Omnibus): 0.202 Jarque-Bera (JB): 1.304
Skew: 0.286 Prob(JB): 0.521
Kurtosis: 1.673 Cond. No. 31.1