AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.727 0.204 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.709
Model: OLS Adj. R-squared: 0.663
Method: Least Squares F-statistic: 15.40
Date: Tue, 03 Dec 2024 Prob (F-statistic): 2.54e-05
Time: 11:46:49 Log-Likelihood: -98.925
No. Observations: 23 AIC: 205.8
Df Residuals: 19 BIC: 210.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 226.8628 89.459 2.536 0.020 39.623 414.103
C(dose)[T.1] -99.6849 103.692 -0.961 0.348 -316.714 117.344
expression -27.4077 14.172 -1.934 0.068 -57.071 2.256
expression:C(dose)[T.1] 24.0480 16.743 1.436 0.167 -10.996 59.092
Omnibus: 0.289 Durbin-Watson: 2.254
Prob(Omnibus): 0.865 Jarque-Bera (JB): 0.247
Skew: -0.213 Prob(JB): 0.884
Kurtosis: 2.723 Cond. No. 226.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.677
Model: OLS Adj. R-squared: 0.645
Method: Least Squares F-statistic: 20.96
Date: Tue, 03 Dec 2024 Prob (F-statistic): 1.24e-05
Time: 11:46:49 Log-Likelihood: -100.11
No. Observations: 23 AIC: 206.2
Df Residuals: 20 BIC: 209.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 118.3213 49.130 2.408 0.026 15.838 220.804
C(dose)[T.1] 48.6968 9.125 5.337 0.000 29.663 67.731
expression -10.1775 7.744 -1.314 0.204 -26.331 5.976
Omnibus: 0.973 Durbin-Watson: 2.037
Prob(Omnibus): 0.615 Jarque-Bera (JB): 0.171
Skew: -0.144 Prob(JB): 0.918
Kurtosis: 3.309 Cond. No. 73.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 03 Dec 2024 Prob (F-statistic): 3.51e-06
Time: 11:46:49 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.217
Model: OLS Adj. R-squared: 0.180
Method: Least Squares F-statistic: 5.817
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0251
Time: 11:46:49 Log-Likelihood: -110.29
No. Observations: 23 AIC: 224.6
Df Residuals: 21 BIC: 226.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 238.8640 66.291 3.603 0.002 101.004 376.724
expression -26.1693 10.850 -2.412 0.025 -48.733 -3.606
Omnibus: 1.761 Durbin-Watson: 2.715
Prob(Omnibus): 0.414 Jarque-Bera (JB): 1.417
Skew: 0.580 Prob(JB): 0.492
Kurtosis: 2.637 Cond. No. 65.1

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.361 0.150 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.540
Model: OLS Adj. R-squared: 0.415
Method: Least Squares F-statistic: 4.310
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0307
Time: 11:46:49 Log-Likelihood: -69.470
No. Observations: 15 AIC: 146.9
Df Residuals: 11 BIC: 149.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 275.7585 260.543 1.058 0.313 -297.693 849.210
C(dose)[T.1] 10.7176 294.258 0.036 0.972 -636.939 658.375
expression -30.7475 38.420 -0.800 0.440 -115.308 53.813
expression:C(dose)[T.1] 6.5202 43.064 0.151 0.882 -88.263 101.303
Omnibus: 2.464 Durbin-Watson: 0.851
Prob(Omnibus): 0.292 Jarque-Bera (JB): 1.233
Skew: -0.340 Prob(JB): 0.540
Kurtosis: 1.772 Cond. No. 421.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.539
Model: OLS Adj. R-squared: 0.463
Method: Least Squares F-statistic: 7.026
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00955
Time: 11:46:49 Log-Likelihood: -69.486
No. Observations: 15 AIC: 145.0
Df Residuals: 12 BIC: 147.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 240.5957 113.190 2.126 0.055 -6.025 487.216
C(dose)[T.1] 55.2082 14.910 3.703 0.003 22.721 87.695
expression -25.5578 16.634 -1.537 0.150 -61.799 10.684
Omnibus: 2.217 Durbin-Watson: 0.817
Prob(Omnibus): 0.330 Jarque-Bera (JB): 1.191
Skew: -0.350 Prob(JB): 0.551
Kurtosis: 1.809 Cond. No. 112.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00629
Time: 11:46:49 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.013
Model: OLS Adj. R-squared: -0.063
Method: Least Squares F-statistic: 0.1733
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.684
Time: 11:46:49 Log-Likelihood: -75.201
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 158.5101 156.096 1.015 0.328 -178.716 495.736
expression -9.3963 22.572 -0.416 0.684 -58.160 39.368
Omnibus: 0.655 Durbin-Watson: 1.646
Prob(Omnibus): 0.721 Jarque-Bera (JB): 0.612
Skew: 0.119 Prob(JB): 0.736
Kurtosis: 2.040 Cond. No. 109.