AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.192 0.666 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.669
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 12.79
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.34e-05
Time: 04:56:57 Log-Likelihood: -100.40
No. Observations: 23 AIC: 208.8
Df Residuals: 19 BIC: 213.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 132.3178 75.346 1.756 0.095 -25.384 290.020
C(dose)[T.1] -37.7412 95.126 -0.397 0.696 -236.843 161.360
expression -12.4123 11.935 -1.040 0.311 -37.392 12.567
expression:C(dose)[T.1] 14.3951 14.843 0.970 0.344 -16.672 45.462
Omnibus: 0.742 Durbin-Watson: 1.667
Prob(Omnibus): 0.690 Jarque-Bera (JB): 0.721
Skew: -0.165 Prob(JB): 0.697
Kurtosis: 2.198 Cond. No. 199.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.652
Model: OLS Adj. R-squared: 0.618
Method: Least Squares F-statistic: 18.77
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.58e-05
Time: 04:56:57 Log-Likelihood: -100.95
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 73.7543 44.994 1.639 0.117 -20.102 167.611
C(dose)[T.1] 54.1069 8.903 6.077 0.000 35.536 72.678
expression -3.1060 7.085 -0.438 0.666 -17.886 11.674
Omnibus: 0.355 Durbin-Watson: 1.775
Prob(Omnibus): 0.837 Jarque-Bera (JB): 0.504
Skew: 0.056 Prob(JB): 0.777
Kurtosis: 2.284 Cond. No. 68.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:56:57 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.010
Model: OLS Adj. R-squared: -0.037
Method: Least Squares F-statistic: 0.2218
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.643
Time: 04:56:57 Log-Likelihood: -112.98
No. Observations: 23 AIC: 230.0
Df Residuals: 21 BIC: 232.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 45.1804 73.681 0.613 0.546 -108.048 198.408
expression 5.3868 11.437 0.471 0.643 -18.399 29.172
Omnibus: 3.941 Durbin-Watson: 2.549
Prob(Omnibus): 0.139 Jarque-Bera (JB): 1.622
Skew: 0.246 Prob(JB): 0.444
Kurtosis: 1.796 Cond. No. 67.7

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.358 0.561 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.474
Model: OLS Adj. R-squared: 0.330
Method: Least Squares F-statistic: 3.298
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0615
Time: 04:56:58 Log-Likelihood: -70.488
No. Observations: 15 AIC: 149.0
Df Residuals: 11 BIC: 151.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 146.3994 115.739 1.265 0.232 -108.342 401.140
C(dose)[T.1] -11.6969 142.792 -0.082 0.936 -325.980 302.586
expression -10.9574 15.976 -0.686 0.507 -46.121 24.207
expression:C(dose)[T.1] 8.4530 19.677 0.430 0.676 -34.855 51.761
Omnibus: 2.239 Durbin-Watson: 0.984
Prob(Omnibus): 0.326 Jarque-Bera (JB): 1.584
Skew: -0.764 Prob(JB): 0.453
Kurtosis: 2.554 Cond. No. 188.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.465
Model: OLS Adj. R-squared: 0.376
Method: Least Squares F-statistic: 5.209
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0235
Time: 04:56:58 Log-Likelihood: -70.613
No. Observations: 15 AIC: 147.2
Df Residuals: 12 BIC: 149.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 106.2365 65.870 1.613 0.133 -37.281 249.754
C(dose)[T.1] 49.2560 15.511 3.176 0.008 15.462 83.050
expression -5.3847 9.003 -0.598 0.561 -25.002 14.232
Omnibus: 2.668 Durbin-Watson: 0.863
Prob(Omnibus): 0.263 Jarque-Bera (JB): 1.880
Skew: -0.840 Prob(JB): 0.391
Kurtosis: 2.569 Cond. No. 63.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:56:58 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.015
Model: OLS Adj. R-squared: -0.061
Method: Least Squares F-statistic: 0.1964
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.665
Time: 04:56:58 Log-Likelihood: -75.188
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 131.1817 85.241 1.539 0.148 -52.971 315.335
expression -5.2011 11.735 -0.443 0.665 -30.553 20.150
Omnibus: 1.417 Durbin-Watson: 1.750
Prob(Omnibus): 0.492 Jarque-Bera (JB): 0.831
Skew: 0.099 Prob(JB): 0.660
Kurtosis: 1.864 Cond. No. 62.5