AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.146 0.297 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.675
Model: OLS Adj. R-squared: 0.624
Method: Least Squares F-statistic: 13.16
Date: Thu, 21 Nov 2024 Prob (F-statistic): 6.96e-05
Time: 05:07:50 Log-Likelihood: -100.17
No. Observations: 23 AIC: 208.3
Df Residuals: 19 BIC: 212.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 25.9029 80.033 0.324 0.750 -141.609 193.415
C(dose)[T.1] -27.7169 122.373 -0.226 0.823 -283.846 228.412
expression 3.7321 10.523 0.355 0.727 -18.292 25.757
expression:C(dose)[T.1] 10.1590 15.760 0.645 0.527 -22.826 43.144
Omnibus: 0.806 Durbin-Watson: 1.836
Prob(Omnibus): 0.668 Jarque-Bera (JB): 0.428
Skew: -0.331 Prob(JB): 0.807
Kurtosis: 2.909 Cond. No. 282.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.668
Model: OLS Adj. R-squared: 0.635
Method: Least Squares F-statistic: 20.13
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.62e-05
Time: 05:07:50 Log-Likelihood: -100.42
No. Observations: 23 AIC: 206.8
Df Residuals: 20 BIC: 210.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -8.4482 58.834 -0.144 0.887 -131.174 114.277
C(dose)[T.1] 50.9558 8.814 5.781 0.000 32.569 69.342
expression 8.2612 7.718 1.070 0.297 -7.839 24.361
Omnibus: 0.464 Durbin-Watson: 1.828
Prob(Omnibus): 0.793 Jarque-Bera (JB): 0.533
Skew: -0.285 Prob(JB): 0.766
Kurtosis: 2.518 Cond. No. 109.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:07:50 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.113
Model: OLS Adj. R-squared: 0.071
Method: Least Squares F-statistic: 2.686
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.116
Time: 05:07:50 Log-Likelihood: -111.72
No. Observations: 23 AIC: 227.4
Df Residuals: 21 BIC: 229.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -71.0462 92.233 -0.770 0.450 -262.855 120.763
expression 19.5232 11.911 1.639 0.116 -5.248 44.294
Omnibus: 2.324 Durbin-Watson: 2.380
Prob(Omnibus): 0.313 Jarque-Bera (JB): 1.141
Skew: -0.027 Prob(JB): 0.565
Kurtosis: 1.910 Cond. No. 107.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.740 0.212 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.519
Model: OLS Adj. R-squared: 0.388
Method: Least Squares F-statistic: 3.959
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0387
Time: 05:07:50 Log-Likelihood: -69.809
No. Observations: 15 AIC: 147.6
Df Residuals: 11 BIC: 150.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 186.8639 137.046 1.364 0.200 -114.771 488.499
C(dose)[T.1] 76.7928 210.863 0.364 0.723 -387.314 540.900
expression -14.0021 16.013 -0.874 0.401 -49.246 21.242
expression:C(dose)[T.1] -2.7556 24.261 -0.114 0.912 -56.153 50.642
Omnibus: 1.656 Durbin-Watson: 0.896
Prob(Omnibus): 0.437 Jarque-Bera (JB): 1.132
Skew: -0.644 Prob(JB): 0.568
Kurtosis: 2.608 Cond. No. 313.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.519
Model: OLS Adj. R-squared: 0.438
Method: Least Squares F-statistic: 6.463
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0124
Time: 05:07:50 Log-Likelihood: -69.817
No. Observations: 15 AIC: 145.6
Df Residuals: 12 BIC: 147.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 197.1034 98.883 1.993 0.069 -18.345 412.552
C(dose)[T.1] 52.9085 14.976 3.533 0.004 20.279 85.538
expression -15.2025 11.524 -1.319 0.212 -40.311 9.906
Omnibus: 1.679 Durbin-Watson: 0.932
Prob(Omnibus): 0.432 Jarque-Bera (JB): 1.173
Skew: -0.652 Prob(JB): 0.556
Kurtosis: 2.579 Cond. No. 119.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:07:50 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.018
Model: OLS Adj. R-squared: -0.058
Method: Least Squares F-statistic: 0.2364
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.635
Time: 05:07:50 Log-Likelihood: -75.165
No. Observations: 15 AIC: 154.3
Df Residuals: 13 BIC: 155.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 159.0725 134.891 1.179 0.259 -132.341 450.486
expression -7.5526 15.533 -0.486 0.635 -41.109 26.004
Omnibus: 1.276 Durbin-Watson: 1.771
Prob(Omnibus): 0.528 Jarque-Bera (JB): 0.806
Skew: 0.131 Prob(JB): 0.668
Kurtosis: 1.895 Cond. No. 118.