AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
5.750 0.026 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.728
Model: OLS Adj. R-squared: 0.685
Method: Least Squares F-statistic: 16.94
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.34e-05
Time: 04:11:49 Log-Likelihood: -98.136
No. Observations: 23 AIC: 204.3
Df Residuals: 19 BIC: 208.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -42.6144 94.856 -0.449 0.658 -241.150 155.921
C(dose)[T.1] 33.2458 109.978 0.302 0.766 -196.940 263.431
expression 14.9211 14.594 1.022 0.319 -15.624 45.466
expression:C(dose)[T.1] 3.0768 16.900 0.182 0.857 -32.295 38.448
Omnibus: 1.311 Durbin-Watson: 1.986
Prob(Omnibus): 0.519 Jarque-Bera (JB): 0.938
Skew: 0.170 Prob(JB): 0.626
Kurtosis: 2.071 Cond. No. 268.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.727
Model: OLS Adj. R-squared: 0.700
Method: Least Squares F-statistic: 26.69
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.26e-06
Time: 04:11:49 Log-Likelihood: -98.156
No. Observations: 23 AIC: 202.3
Df Residuals: 20 BIC: 205.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -57.5026 46.891 -1.226 0.234 -155.315 40.310
C(dose)[T.1] 53.2165 7.729 6.885 0.000 37.094 69.339
expression 17.2155 7.179 2.398 0.026 2.240 32.191
Omnibus: 1.519 Durbin-Watson: 2.006
Prob(Omnibus): 0.468 Jarque-Bera (JB): 0.977
Skew: 0.133 Prob(JB): 0.614
Kurtosis: 2.026 Cond. No. 81.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:11:49 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.081
Model: OLS Adj. R-squared: 0.038
Method: Least Squares F-statistic: 1.859
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.187
Time: 04:11:49 Log-Likelihood: -112.13
No. Observations: 23 AIC: 228.3
Df Residuals: 21 BIC: 230.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -34.1397 83.790 -0.407 0.688 -208.390 140.111
expression 17.5372 12.862 1.363 0.187 -9.211 44.285
Omnibus: 3.497 Durbin-Watson: 2.451
Prob(Omnibus): 0.174 Jarque-Bera (JB): 1.475
Skew: 0.191 Prob(JB): 0.478
Kurtosis: 1.820 Cond. No. 80.8

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.248 0.286 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.540
Model: OLS Adj. R-squared: 0.414
Method: Least Squares F-statistic: 4.303
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0308
Time: 04:11:49 Log-Likelihood: -69.477
No. Observations: 15 AIC: 147.0
Df Residuals: 11 BIC: 149.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 35.8702 80.284 0.447 0.664 -140.833 212.573
C(dose)[T.1] -90.8989 145.321 -0.626 0.544 -410.748 228.950
expression 5.3346 13.444 0.397 0.699 -24.255 34.924
expression:C(dose)[T.1] 23.6513 24.416 0.969 0.354 -30.087 77.390
Omnibus: 1.799 Durbin-Watson: 0.631
Prob(Omnibus): 0.407 Jarque-Bera (JB): 1.394
Skew: -0.603 Prob(JB): 0.498
Kurtosis: 2.118 Cond. No. 145.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.501
Model: OLS Adj. R-squared: 0.417
Method: Least Squares F-statistic: 6.017
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0155
Time: 04:11:49 Log-Likelihood: -70.091
No. Observations: 15 AIC: 146.2
Df Residuals: 12 BIC: 148.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -6.5506 67.116 -0.098 0.924 -152.783 139.682
C(dose)[T.1] 49.1191 14.980 3.279 0.007 16.480 81.758
expression 12.5054 11.193 1.117 0.286 -11.883 36.894
Omnibus: 1.687 Durbin-Watson: 0.609
Prob(Omnibus): 0.430 Jarque-Bera (JB): 1.336
Skew: -0.598 Prob(JB): 0.513
Kurtosis: 2.159 Cond. No. 55.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:11:49 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.053
Model: OLS Adj. R-squared: -0.019
Method: Least Squares F-statistic: 0.7327
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.408
Time: 04:11:49 Log-Likelihood: -74.889
No. Observations: 15 AIC: 153.8
Df Residuals: 13 BIC: 155.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 18.6432 88.205 0.211 0.836 -171.912 209.199
expression 12.6749 14.808 0.856 0.408 -19.316 44.665
Omnibus: 2.058 Durbin-Watson: 1.500
Prob(Omnibus): 0.357 Jarque-Bera (JB): 0.963
Skew: 0.066 Prob(JB): 0.618
Kurtosis: 1.766 Cond. No. 54.6