AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
5.532 0.029 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.741
Model: OLS Adj. R-squared: 0.700
Method: Least Squares F-statistic: 18.12
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.44e-06
Time: 04:36:31 Log-Likelihood: -97.570
No. Observations: 23 AIC: 203.1
Df Residuals: 19 BIC: 207.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 20.6871 66.099 0.313 0.758 -117.659 159.033
C(dose)[T.1] -50.6109 85.526 -0.592 0.561 -229.618 128.396
expression 7.5811 14.900 0.509 0.617 -23.605 38.767
expression:C(dose)[T.1] 19.8446 18.385 1.079 0.294 -18.636 58.325
Omnibus: 1.680 Durbin-Watson: 1.481
Prob(Omnibus): 0.432 Jarque-Bera (JB): 1.439
Skew: 0.563 Prob(JB): 0.487
Kurtosis: 2.516 Cond. No. 153.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.725
Model: OLS Adj. R-squared: 0.698
Method: Least Squares F-statistic: 26.38
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.46e-06
Time: 04:36:31 Log-Likelihood: -98.254
No. Observations: 23 AIC: 202.5
Df Residuals: 20 BIC: 205.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -36.9456 39.124 -0.944 0.356 -118.557 44.666
C(dose)[T.1] 41.1585 9.330 4.411 0.000 21.696 60.621
expression 20.6153 8.765 2.352 0.029 2.333 38.898
Omnibus: 1.747 Durbin-Watson: 1.659
Prob(Omnibus): 0.418 Jarque-Bera (JB): 1.407
Skew: 0.578 Prob(JB): 0.495
Kurtosis: 2.635 Cond. No. 50.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:36:31 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.458
Model: OLS Adj. R-squared: 0.432
Method: Least Squares F-statistic: 17.72
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000394
Time: 04:36:31 Log-Likelihood: -106.07
No. Observations: 23 AIC: 216.1
Df Residuals: 21 BIC: 218.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -118.1935 47.316 -2.498 0.021 -216.592 -19.795
expression 42.0710 9.995 4.209 0.000 21.286 62.856
Omnibus: 1.406 Durbin-Watson: 1.631
Prob(Omnibus): 0.495 Jarque-Bera (JB): 0.965
Skew: 0.166 Prob(JB): 0.617
Kurtosis: 2.053 Cond. No. 44.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.243 0.631 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.497
Model: OLS Adj. R-squared: 0.360
Method: Least Squares F-statistic: 3.626
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0487
Time: 04:36:31 Log-Likelihood: -70.143
No. Observations: 15 AIC: 148.3
Df Residuals: 11 BIC: 151.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 42.8720 160.564 0.267 0.794 -310.527 396.271
C(dose)[T.1] 291.3147 267.497 1.089 0.299 -297.443 880.073
expression 5.5422 36.145 0.153 0.881 -74.013 85.098
expression:C(dose)[T.1] -54.4785 60.138 -0.906 0.384 -186.841 77.884
Omnibus: 2.940 Durbin-Watson: 0.905
Prob(Omnibus): 0.230 Jarque-Bera (JB): 1.562
Skew: -0.790 Prob(JB): 0.458
Kurtosis: 3.059 Cond. No. 200.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.460
Model: OLS Adj. R-squared: 0.370
Method: Least Squares F-statistic: 5.105
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0249
Time: 04:36:31 Log-Likelihood: -70.683
No. Observations: 15 AIC: 147.4
Df Residuals: 12 BIC: 149.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 130.0731 127.546 1.020 0.328 -147.827 407.973
C(dose)[T.1] 49.4083 15.588 3.170 0.008 15.444 83.373
expression -14.1383 28.671 -0.493 0.631 -76.608 48.331
Omnibus: 3.013 Durbin-Watson: 0.768
Prob(Omnibus): 0.222 Jarque-Bera (JB): 1.951
Skew: -0.875 Prob(JB): 0.377
Kurtosis: 2.757 Cond. No. 77.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:36:31 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.007
Model: OLS Adj. R-squared: -0.069
Method: Least Squares F-statistic: 0.09715
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.760
Time: 04:36:31 Log-Likelihood: -75.244
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 145.3040 165.979 0.875 0.397 -213.272 503.879
expression -11.6331 37.323 -0.312 0.760 -92.264 68.998
Omnibus: 0.350 Durbin-Watson: 1.562
Prob(Omnibus): 0.840 Jarque-Bera (JB): 0.475
Skew: -0.014 Prob(JB): 0.789
Kurtosis: 2.129 Cond. No. 76.6