AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
4.821 0.040 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.719
Model: OLS Adj. R-squared: 0.675
Method: Least Squares F-statistic: 16.24
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.78e-05
Time: 04:48:22 Log-Likelihood: -98.491
No. Observations: 23 AIC: 205.0
Df Residuals: 19 BIC: 209.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 222.6863 84.655 2.631 0.016 45.502 399.871
C(dose)[T.1] 2.9743 158.176 0.019 0.985 -328.091 334.040
expression -20.6669 10.362 -1.994 0.061 -42.355 1.021
expression:C(dose)[T.1] 7.0686 18.535 0.381 0.707 -31.726 45.863
Omnibus: 0.647 Durbin-Watson: 1.812
Prob(Omnibus): 0.724 Jarque-Bera (JB): 0.623
Skew: -0.344 Prob(JB): 0.732
Kurtosis: 2.579 Cond. No. 405.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.717
Model: OLS Adj. R-squared: 0.689
Method: Least Squares F-statistic: 25.36
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.27e-06
Time: 04:48:22 Log-Likelihood: -98.579
No. Observations: 23 AIC: 203.2
Df Residuals: 20 BIC: 206.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 204.6771 68.742 2.977 0.007 61.284 348.070
C(dose)[T.1] 63.1929 9.062 6.974 0.000 44.290 82.096
expression -18.4577 8.406 -2.196 0.040 -35.992 -0.923
Omnibus: 0.715 Durbin-Watson: 1.804
Prob(Omnibus): 0.699 Jarque-Bera (JB): 0.669
Skew: -0.362 Prob(JB): 0.716
Kurtosis: 2.585 Cond. No. 150.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:48:22 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.030
Model: OLS Adj. R-squared: -0.017
Method: Least Squares F-statistic: 0.6420
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.432
Time: 04:48:22 Log-Likelihood: -112.76
No. Observations: 23 AIC: 229.5
Df Residuals: 21 BIC: 231.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -9.2115 111.215 -0.083 0.935 -240.496 222.073
expression 10.5774 13.201 0.801 0.432 -16.876 38.031
Omnibus: 3.847 Durbin-Watson: 2.367
Prob(Omnibus): 0.146 Jarque-Bera (JB): 1.632
Skew: 0.264 Prob(JB): 0.442
Kurtosis: 1.806 Cond. No. 134.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.163 0.693 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.486
Model: OLS Adj. R-squared: 0.346
Method: Least Squares F-statistic: 3.469
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0544
Time: 04:48:22 Log-Likelihood: -70.306
No. Observations: 15 AIC: 148.6
Df Residuals: 11 BIC: 151.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -159.3038 255.127 -0.624 0.545 -720.834 402.227
C(dose)[T.1] 291.7185 302.668 0.964 0.356 -374.450 957.887
expression 30.0371 33.764 0.890 0.393 -44.277 104.351
expression:C(dose)[T.1] -32.1379 40.092 -0.802 0.440 -120.379 56.103
Omnibus: 2.546 Durbin-Watson: 0.742
Prob(Omnibus): 0.280 Jarque-Bera (JB): 1.660
Skew: -0.802 Prob(JB): 0.436
Kurtosis: 2.709 Cond. No. 428.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.456
Model: OLS Adj. R-squared: 0.366
Method: Least Squares F-statistic: 5.033
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0259
Time: 04:48:22 Log-Likelihood: -70.732
No. Observations: 15 AIC: 147.5
Df Residuals: 12 BIC: 149.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 12.7521 135.845 0.094 0.927 -283.229 308.733
C(dose)[T.1] 49.4305 15.644 3.160 0.008 15.344 83.517
expression 7.2435 17.933 0.404 0.693 -31.829 46.316
Omnibus: 2.288 Durbin-Watson: 0.755
Prob(Omnibus): 0.318 Jarque-Bera (JB): 1.733
Skew: -0.772 Prob(JB): 0.420
Kurtosis: 2.377 Cond. No. 134.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:48:22 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.004
Model: OLS Adj. R-squared: -0.073
Method: Least Squares F-statistic: 0.04874
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.829
Time: 04:48:22 Log-Likelihood: -75.272
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.9192 175.797 0.312 0.760 -324.867 434.706
expression 5.1449 23.304 0.221 0.829 -45.200 55.490
Omnibus: 0.819 Durbin-Watson: 1.589
Prob(Omnibus): 0.664 Jarque-Bera (JB): 0.665
Skew: 0.105 Prob(JB): 0.717
Kurtosis: 1.990 Cond. No. 133.