AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.015 0.905 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.598
Method: Least Squares F-statistic: 11.91
Date: Wed, 29 Jan 2025 Prob (F-statistic): 0.000129
Time: 01:08:59 Log-Likelihood: -100.94
No. Observations: 23 AIC: 209.9
Df Residuals: 19 BIC: 214.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 38.4784 39.724 0.969 0.345 -44.665 121.622
C(dose)[T.1] 76.3845 53.847 1.419 0.172 -36.319 189.088
expression 3.5183 8.777 0.401 0.693 -14.851 21.888
expression:C(dose)[T.1] -5.1534 11.871 -0.434 0.669 -30.000 19.693
Omnibus: 0.356 Durbin-Watson: 1.880
Prob(Omnibus): 0.837 Jarque-Bera (JB): 0.512
Skew: 0.136 Prob(JB): 0.774
Kurtosis: 2.322 Cond. No. 75.8

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.52
Date: Wed, 29 Jan 2025 Prob (F-statistic): 2.81e-05
Time: 01:08:59 Log-Likelihood: -101.05
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 51.0723 26.580 1.921 0.069 -4.374 106.518
C(dose)[T.1] 53.3339 8.767 6.084 0.000 35.047 71.621
expression 0.7014 5.789 0.121 0.905 -11.373 12.776
Omnibus: 0.280 Durbin-Watson: 1.866
Prob(Omnibus): 0.869 Jarque-Bera (JB): 0.459
Skew: 0.058 Prob(JB): 0.795
Kurtosis: 2.317 Cond. No. 29.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Wed, 29 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 01:08:59 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.007156
Date: Wed, 29 Jan 2025 Prob (F-statistic): 0.933
Time: 01:08:59 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 76.1086 43.268 1.759 0.093 -13.872 166.089
expression 0.8068 9.538 0.085 0.933 -19.028 20.641
Omnibus: 3.479 Durbin-Watson: 2.467
Prob(Omnibus): 0.176 Jarque-Bera (JB): 1.612
Skew: 0.294 Prob(JB): 0.447
Kurtosis: 1.844 Cond. No. 28.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.001 0.972 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.483
Model: OLS Adj. R-squared: 0.343
Method: Least Squares F-statistic: 3.431
Date: Wed, 29 Jan 2025 Prob (F-statistic): 0.0559
Time: 01:08:59 Log-Likelihood: -70.346
No. Observations: 15 AIC: 148.7
Df Residuals: 11 BIC: 151.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 112.6355 62.899 1.791 0.101 -25.805 251.076
C(dose)[T.1] -16.4929 78.348 -0.211 0.837 -188.935 155.949
expression -9.5464 13.054 -0.731 0.480 -38.278 19.185
expression:C(dose)[T.1] 13.5158 15.745 0.858 0.409 -21.139 48.171
Omnibus: 1.076 Durbin-Watson: 0.940
Prob(Omnibus): 0.584 Jarque-Bera (JB): 0.908
Skew: -0.514 Prob(JB): 0.635
Kurtosis: 2.371 Cond. No. 75.4

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 4.886
Date: Wed, 29 Jan 2025 Prob (F-statistic): 0.0280
Time: 01:08:59 Log-Likelihood: -70.832
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 68.6426 36.064 1.903 0.081 -9.935 147.220
C(dose)[T.1] 49.3053 16.034 3.075 0.010 14.369 84.241
expression -0.2564 7.219 -0.036 0.972 -15.984 15.472
Omnibus: 2.729 Durbin-Watson: 0.803
Prob(Omnibus): 0.255 Jarque-Bera (JB): 1.869
Skew: -0.845 Prob(JB): 0.393
Kurtosis: 2.631 Cond. No. 24.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Wed, 29 Jan 2025 Prob (F-statistic): 0.00629
Time: 01:08:59 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.015
Model: OLS Adj. R-squared: -0.061
Method: Least Squares F-statistic: 0.1918
Date: Wed, 29 Jan 2025 Prob (F-statistic): 0.669
Time: 01:08:59 Log-Likelihood: -75.190
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 73.8854 46.280 1.597 0.134 -26.095 173.866
expression 3.9866 9.103 0.438 0.669 -15.679 23.652
Omnibus: 0.042 Durbin-Watson: 1.635
Prob(Omnibus): 0.979 Jarque-Bera (JB): 0.265
Skew: -0.049 Prob(JB): 0.876
Kurtosis: 2.357 Cond. No. 24.2