AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.534 0.230 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.677
Model: OLS Adj. R-squared: 0.626
Method: Least Squares F-statistic: 13.26
Date: Thu, 21 Nov 2024 Prob (F-statistic): 6.65e-05
Time: 05:08:38 Log-Likelihood: -100.12
No. Observations: 23 AIC: 208.2
Df Residuals: 19 BIC: 212.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 135.7342 76.855 1.766 0.093 -25.124 296.593
C(dose)[T.1] 15.5964 98.916 0.158 0.876 -191.437 222.630
expression -23.0698 21.682 -1.064 0.301 -68.451 22.312
expression:C(dose)[T.1] 11.0800 27.531 0.402 0.692 -46.544 68.704
Omnibus: 2.267 Durbin-Watson: 1.775
Prob(Omnibus): 0.322 Jarque-Bera (JB): 1.252
Skew: 0.223 Prob(JB): 0.535
Kurtosis: 1.948 Cond. No. 122.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.674
Model: OLS Adj. R-squared: 0.641
Method: Least Squares F-statistic: 20.68
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.35e-05
Time: 05:08:38 Log-Likelihood: -100.21
No. Observations: 23 AIC: 206.4
Df Residuals: 20 BIC: 209.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 111.4488 46.587 2.392 0.027 14.270 208.628
C(dose)[T.1] 55.2483 8.591 6.431 0.000 37.327 73.170
expression -16.1976 13.079 -1.238 0.230 -43.479 11.084
Omnibus: 2.362 Durbin-Watson: 1.793
Prob(Omnibus): 0.307 Jarque-Bera (JB): 1.383
Skew: 0.305 Prob(JB): 0.501
Kurtosis: 1.965 Cond. No. 43.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:08:38 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.002462
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.961
Time: 05:08:38 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 83.6351 79.285 1.055 0.303 -81.247 248.517
expression -1.0912 21.991 -0.050 0.961 -46.825 44.642
Omnibus: 3.247 Durbin-Watson: 2.494
Prob(Omnibus): 0.197 Jarque-Bera (JB): 1.566
Skew: 0.294 Prob(JB): 0.457
Kurtosis: 1.865 Cond. No. 42.6

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.417 0.146 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.566
Model: OLS Adj. R-squared: 0.448
Method: Least Squares F-statistic: 4.785
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0227
Time: 05:08:38 Log-Likelihood: -69.037
No. Observations: 15 AIC: 146.1
Df Residuals: 11 BIC: 148.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -147.4480 146.823 -1.004 0.337 -470.604 175.707
C(dose)[T.1] 183.2948 171.988 1.066 0.309 -195.248 561.838
expression 70.3341 47.932 1.467 0.170 -35.164 175.832
expression:C(dose)[T.1] -44.4102 55.799 -0.796 0.443 -167.224 78.403
Omnibus: 2.328 Durbin-Watson: 1.185
Prob(Omnibus): 0.312 Jarque-Bera (JB): 1.104
Skew: -0.663 Prob(JB): 0.576
Kurtosis: 3.087 Cond. No. 120.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.541
Model: OLS Adj. R-squared: 0.465
Method: Least Squares F-statistic: 7.077
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00933
Time: 05:08:38 Log-Likelihood: -69.457
No. Observations: 15 AIC: 144.9
Df Residuals: 12 BIC: 147.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -47.3328 74.557 -0.635 0.537 -209.779 115.114
C(dose)[T.1] 46.9090 14.435 3.250 0.007 15.458 78.360
expression 37.5641 24.162 1.555 0.146 -15.080 90.208
Omnibus: 1.748 Durbin-Watson: 0.841
Prob(Omnibus): 0.417 Jarque-Bera (JB): 0.831
Skew: -0.576 Prob(JB): 0.660
Kurtosis: 2.974 Cond. No. 36.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:08:38 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.137
Model: OLS Adj. R-squared: 0.071
Method: Least Squares F-statistic: 2.071
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.174
Time: 05:08:38 Log-Likelihood: -74.191
No. Observations: 15 AIC: 152.4
Df Residuals: 13 BIC: 153.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -47.0245 98.218 -0.479 0.640 -259.212 165.163
expression 45.5671 31.664 1.439 0.174 -22.838 113.973
Omnibus: 1.015 Durbin-Watson: 1.900
Prob(Omnibus): 0.602 Jarque-Bera (JB): 0.903
Skew: 0.468 Prob(JB): 0.637
Kurtosis: 2.246 Cond. No. 35.6