AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.728 0.204 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.679
Model: OLS Adj. R-squared: 0.629
Method: Least Squares F-statistic: 13.42
Date: Thu, 21 Nov 2024 Prob (F-statistic): 6.18e-05
Time: 04:43:22 Log-Likelihood: -100.03
No. Observations: 23 AIC: 208.1
Df Residuals: 19 BIC: 212.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 41.6018 51.655 0.805 0.431 -66.513 149.717
C(dose)[T.1] 24.8932 60.655 0.410 0.686 -102.060 151.846
expression 3.7561 15.288 0.246 0.809 -28.242 35.754
expression:C(dose)[T.1] 6.4015 17.124 0.374 0.713 -29.440 42.244
Omnibus: 1.137 Durbin-Watson: 1.894
Prob(Omnibus): 0.566 Jarque-Bera (JB): 0.341
Skew: -0.273 Prob(JB): 0.843
Kurtosis: 3.240 Cond. No. 85.2

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.677
Model: OLS Adj. R-squared: 0.645
Method: Least Squares F-statistic: 20.96
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.24e-05
Time: 04:43:22 Log-Likelihood: -100.11
No. Observations: 23 AIC: 206.2
Df Residuals: 20 BIC: 209.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 24.4775 23.352 1.048 0.307 -24.234 73.189
C(dose)[T.1] 47.2691 9.597 4.925 0.000 27.250 67.288
expression 8.8581 6.738 1.315 0.204 -5.197 22.914
Omnibus: 1.188 Durbin-Watson: 1.873
Prob(Omnibus): 0.552 Jarque-Bera (JB): 0.493
Skew: -0.354 Prob(JB): 0.781
Kurtosis: 3.114 Cond. No. 22.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:43:22 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.285
Model: OLS Adj. R-squared: 0.251
Method: Least Squares F-statistic: 8.376
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00868
Time: 04:43:22 Log-Likelihood: -109.24
No. Observations: 23 AIC: 222.5
Df Residuals: 21 BIC: 224.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -11.7227 32.179 -0.364 0.719 -78.643 55.198
expression 24.8212 8.576 2.894 0.009 6.985 42.657
Omnibus: 0.165 Durbin-Watson: 2.406
Prob(Omnibus): 0.921 Jarque-Bera (JB): 0.370
Skew: -0.106 Prob(JB): 0.831
Kurtosis: 2.415 Cond. No. 21.1

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.155 0.168 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.549
Model: OLS Adj. R-squared: 0.426
Method: Least Squares F-statistic: 4.467
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0277
Time: 04:43:22 Log-Likelihood: -69.325
No. Observations: 15 AIC: 146.6
Df Residuals: 11 BIC: 149.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 152.9494 58.646 2.608 0.024 23.871 282.028
C(dose)[T.1] -7.1002 83.577 -0.085 0.934 -191.052 176.852
expression -15.7693 10.627 -1.484 0.166 -39.159 7.620
expression:C(dose)[T.1] 9.9857 15.740 0.634 0.539 -24.659 44.630
Omnibus: 2.418 Durbin-Watson: 1.075
Prob(Omnibus): 0.298 Jarque-Bera (JB): 1.598
Skew: -0.783 Prob(JB): 0.450
Kurtosis: 2.679 Cond. No. 80.7

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.533
Model: OLS Adj. R-squared: 0.455
Method: Least Squares F-statistic: 6.839
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0104
Time: 04:43:22 Log-Likelihood: -69.594
No. Observations: 15 AIC: 145.2
Df Residuals: 12 BIC: 147.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 128.2657 42.773 2.999 0.011 35.071 221.461
C(dose)[T.1] 45.0429 14.766 3.050 0.010 12.871 77.215
expression -11.2178 7.642 -1.468 0.168 -27.868 5.432
Omnibus: 1.587 Durbin-Watson: 0.979
Prob(Omnibus): 0.452 Jarque-Bera (JB): 1.236
Skew: -0.635 Prob(JB): 0.539
Kurtosis: 2.398 Cond. No. 32.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:43:22 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.170
Model: OLS Adj. R-squared: 0.106
Method: Least Squares F-statistic: 2.669
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.126
Time: 04:43:23 Log-Likelihood: -73.900
No. Observations: 15 AIC: 151.8
Df Residuals: 13 BIC: 153.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 175.6319 51.022 3.442 0.004 65.405 285.859
expression -15.6848 9.602 -1.634 0.126 -36.428 5.058
Omnibus: 1.927 Durbin-Watson: 1.909
Prob(Omnibus): 0.382 Jarque-Bera (JB): 1.410
Skew: 0.573 Prob(JB): 0.494
Kurtosis: 2.028 Cond. No. 30.3